Beginning
Serverless Computing

Developing with Amazon Web Services,
Microsoft Azure, and Google Cloud

Maddie Stigler

Apress’

Beginning Serverless
Computing

Maddie Stigler

ApPress’

Beginning Serverless Computing

Maddie Stigler
Richmond, Virginia, USA

ISBN-13 (pbk): 978-1-4842-3083-1 ISBN-13 (electronic): 978-1-4842-3084-8
https://doi.org/10.1007/978-1-4842-3084-8

Library of Congress Control Number: 2017961537
Copyright © 2018 by Maddie Stigler

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Technical Reviewer: Brandon Atkinson
Coordinating Editor: Jill Balzano

Copy Editor: James A. Compton
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484230831. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3084-8
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484230831
http://www.apress.com/source-code

This is dedicated to my supportive friends and family.

Contents

ADOUT The AUTNOLceeeiiireeeiirressessnsessrrsnssssrssnsssssssnnssssssnnsssssssnnssssnsnnnsssnnnnnnnsnnnnnnns Xi

About the Technical REVIEWETccorerrrrsemmmnssssssssmmsssssnssssssssssssssnnnnssssssssssssnnnnnssnsss Xill

Chapter 1: Understanding Serverless Computing......cccuusssemmmmmmnrsssssssssssssnsssessssnns 1
What Is Serverless COMPULING?ccccvovvrvrrennnrer s sn s se e sas e e ees 1
Serverless As an Event-Driven COmMPULAtioN..........ccccevrcerrrererere e ree e sesae e e e e sassesaenenees 1
FUNCLIONS @S @ SEIVICE (FAAS)coveereeerrerereerererer e resserse s e sesaesassessesesaesesaesassesassesaesessessssessssessssesssnenaes 2
How Does Serverless Computing WOrk? ... 3
HOW IS It DIffEr@Nt?.....cceceeecrs s 4
DT (0] o 4411 | OSSR 5
INAEPENUENT PrOCESSESvevertireereerierie s ae s a e a e b s a e b s b e b e e e s e e e e sa e e e e e sa e e e na e e e naenannnen 5
Benefits and USE CaSES..........ccccrrirererierenisiersise s s ses e ssssssnens 6
Rapid Development and DEpIOYMENT ..o s 7
EASE OF USE ...ttt e bR e b e R e e bbb e e R e e e e R e 7
LI g 0 SO STT 7
ENhanced SCAIADIIITYccooereieeeeee e 7
Netflix Case Study With AWS ... e 8
Limits to Serverless COMPULINGcccoeverererercrrere s e ss s sas e s e e sas s sne s 9
Control of INFrASIIUCIUNEvivccriir s —————— 9
Long-Running Server APPICALION..........coevererererercere s sere s see s ae e e sassesas e saesesaesassesessesassesasnenas 9
VENAOE LOCK-IN.....ceiiiiicii s 10
B 0] 0 0 o 12
Shared INFraSIIUCIUNE ... 13
Limited Number of TESHING TOOIS.......cccccererererererererereres st ee s e e sas e sae e ae e sesas e sas e saesesaenesassanaens 13
00 3T 1T T 14

vi

CONTENTS

Chapter 2: Getting Started........cc.ccccimnnnnmmmmnnsnnnmmneennmnssssnmsssssssssssssssssnes 19

What Each Provider OffErs ... 15
L ST I T 1 1] 15
AZUIE FUNCLIONS ...ttt 17
GOOGIE ClOUT FUNCHIONScovicciecresiresie e e ss s s e s s s b sn e p s n e ne e nenrsnsnnnnens 19

Explore Triggers and EVENES.........ccccvcvcrvrsnsercir s sn s s e 20
WREEAFE THOUEIS? ... s s se e e b e se et b s Rt b s e e e e s e e e s nnns 20
Triggers Within Cloud ProVIAErS..........ccceeureeercrirrescses s ssssssssnns 22

Development Options, TOOIKItS, SDKScccveerieerrerreerierseesesssesessssssessssssssssssssssesssesaesns 22
TYPESCHPt With NOGE.JS......eeeeeee et sae e sa e e sae e sae e saena e e e a e e ae e naen 22
AWS SDK.....coreuemeereeresessessessessssessessessesssssssessessessesssssssessessessesssssssessessessssesssssessessessssssssssessessessssesssseses 24
L] N 26
GOOGIE CIOUA SDK.......ceeeeeeeeereeereereresesseree e ssesessesesaesasaesas e saeessesessesessessesessesesssnssssssssessssessesessensnsesansens 27

Developing Locally vs. Using the Console...........ceereererenenicnnnesesnsese s sse e 28
LOCAI DEVEIOPIMENTecveeiecececer et a e s s b e s e b s b e b e sa e se e se e e e e e e e seeneeneenaenaennns 28
Deployment of FUNCLIONS and RESOUICESccceeererereririeresie e s e s s e nssesnssnnnens 28
Developing and Testing in the Cloud CONSOIE..........cccceeiierererccr e e 30

LT SR 30
Installing VS Code or ChooSing YOUF IDE.........coooeeeirieeerereeeeseresse e ses s sesessssnns 30
0T [PPSR 30
POSIMAN. ... 32

ENVIroNmMent SETUPcicrre v e e sn e s sn e s nesan e nnenn 33
NaVIgAtiNG VS COUEceuereeereeereerere st r e raeser e ras e sae e sesessesasaesas e sae e sae e saesesaesaesenaesesasnenassanaens 34
Node Package Manager: What It Does and HOW 10 USE H.........ccovevevininnncscscresiecie e 37
Serverless FramMEBWOIK ... 38
Organizing your Development ENVIFONMENTcorevrierererererereseresessesessesessesessesassessssessssesassenaens 38

0] 1 [0 113 S 40

CONTENTS

Chapter 3: Amazon Web ServiCes.......ccivummmmmsmsssmmmmssmss 41

EXPIOrE the Ul.....o.eeeeeeeeesser it n s nn s 41
NAVIGALION. ...t e b e R e R R R e Re e aennnae s 42
o] (o] T TSRS OTSRPTSPRSN 44
LAMDAA....cciiciiii i ———————————————————— 45
SECUMLY TAM ...ttt se e sn e n e e n e r e n e n e n e nn e nnnn s 47
L 00T 0 47
ROIES, POIICIES, ANT USEIS....cuecveceirrerrerierrestessessessessessessessessesaessessessessesassssssssssssssssssessesssssesssssessessessensens 48
ROIES fOr LAMDAA..........cieciicececeeee e 49
YOUF FirSt COARvucciiri i s 50
HEHO WO ... s 50
L3 (1o 52
0101 1 L 55
Environment Variables..........covnnn s 57
What Are Environment Variables...........cocvvrnnnnnnsssssssssssssssssssssssss s 57
Using Environment Variables in HEllo WOrId ..o e 58
I S X | SRS 39
EXPIOFNG APl GAIEWAYccoerereeuecrerreesereste s se s se e e s e nense e e nsesnnes 60
USiNg APl GAtEWAY @S @ THUUET ...ccevrveueererreereseseseesesssseesesesssesesss s sssesssss e e s sssessssssssssssssssssssssssssnes 65
RESPONSE 10 THGUETevieeeererteeirir e s e e e s et se s pe e e s e e nn e s s e s s 68
STOrage EVENL ...t 74
AMAZON S3....viiiirrii 74
USING S3 @S @ THGUET ...veuereeeereeerrerersererserasessesessesesaesessessssessssessesessessssessssesssesssssssessssessssessesssssssssesansens 75
RESPONSE 10 THYGEEveeereeereeereerererersesas e rseressesesaesesaesas e sae e ssesessesessessesesaesesassssssssssessssessesessensnsenansens 77
CONCIUSION....ceeccciee e 81

Chapler 4: AZUKe......ucsseeessssmssssssssssssssssssssssssssnssnnsssssssssssssnnnnnsssssssssssnnnnnnnssssssssssss O3

EXPIOre the Ul ...t 83
NAVIGALION. ...t bR R e R R e e Re e aennnae s 84
o (1] T TSSO STSN 88
AZUFE FUNCHIONS ...t e e 89

vii

CONTENTS

AZUIE SECUNTY ...cveeieeeseresisse et a s e nen s n s nr s 91
Implement ReCOMMENAALIONS.......cc.cueeeerireeeerirtr e 93
SEE SECUNTY PONICIES.....cveeecececreece i n s sn s 94

YOUF FirSt COAEvcuicciiriri i 95
HEHO WO ... s 96
153 (1o 101
Do 10 LT T 0] O 103

L T 107
Create a GitHUD WEDHOOK THQUET.......c.cocerereeeererieee e 107
Build Upon Our Hello WOrld APl THGQET......cccuerererrereresenesssessssessesessesessessssessssessssessssssssssssessssssssnenns 111

The STorage EVENL ... 117
AZUIE QUEUE STOTAJE.......ceerererreererisieese s e e s e s st a s e et e s s e e e e s e e nn e s ans 117
Create the FUNCLION ... 118
Microsoft AZure StOrage EXPIOFEccccverueierererreenesisesse e sesse s se e s s s sessssssssssssssssnsnens 120
FiniSh OUF FUNCHON......c.ciice s 123

CONCIUSION....cveccii s 128

Chapter 5: Google Cloudccusmmimmmmmmmsmmsmsmsms s 129

EXPIOFE The Ul ...ttt s e s e s s s s ae e s s e e an e s n e s e an e sn e s nan e an e sanes 129
1 10 F= L] | 131
o [T 132
010 1T T 0] 134

SECUMLY TAM ...ttt sn e n s sn e n e n e nn e sr e nn e nr e nnennennennnn s 135
JAM CONSOIB......ecectticctt bbb bbb bbb bbb bbb 135
ROIBS..c.e e s 136
POHICIES ..o ———— 137

YOUF FIrSt COUR ...t n s 138
3] 00 o 139
STACKANIVE LOGGING.....vcueererreerererseesesessesesesessssesesessssssesessssesssesassassnes 141
STAGE BUCKET ...t 145

viii

CONTENTS

HTTP EVENL ...ttt s e s n e 149
Firebase Realtime Database..........c.coovrerereneninneninsrsee s 151

1 (0] 72 T LT T 1| S 160
Create our Storage Triggered FUNCHION..........cccvevererererererereresrereesessesessesessesasessesessesessssessesassesssnenes 160
Reacting to the Trggered EVENL..........cc e rsesessesesse e e sas e saesesaesessssassesassesasnenes 163
PUD/SUD EVENL ...t 168
What Is Google Cloud PUD/SUD? ... 168
Creating Our PUB/SUD FUNCHIONc.coveeeeee e 170
00] T [T [0 o TS 173
Chapter 6: An Agnostic Approach..........cccuusreemmmnmnnnmmssssssssssmssmsssssssssssssseennns 175
Need for AGNOSEC SOIULIONScccceeeiiieercresr e 175
THE CUITENT STALE ... 175
BUSINESS PrODIBMS ... 179
RecomMMmENded SOIULION. ... 180
Define the APPrOACH........cccevieereriee s s n e ae s n e n e s ae s nenns 181
EXPIOre the COEcceceeerircerer et sn s sn e nn e nnenn 186
Code and Example Using the Database............cccceerrernrerenssesnsnsesssessessssessssessesessens 190
(003 T 11T 195
INA@X...ciiiiimmnnmsssnnnnsssssnnnssssssnnnssssssnnnnsssssnnnssssssnnnsnsssnnnnsnsssnnnnsnsssnnnnsssssnnnnnnsssnnnnnnnss 197

ix

About the Author

Maddie Stigler is a professional developer for a consulting firm based

in Richmond, Virginia. She is a part of the core team for Women Who
Code in Richmond and is involved in many local Microsoft and Amazon
meetups. Her interest in cloud computing began while studying computer
science at the University of Virginia and has only grown since then.
Maddie has maintained a fascination with serverless technology from the
start and has applied principles of serverless design and architecture both
in her professional and personal work, including developing a flight status
service for travel insurance customers using AWS Lambda and Node.js.
Her favorite application to date has been creating Amazon Alexa skills by
utilizing Lambda functions written in Node.js and triggering them with the
Alexa Skills Kit. Maddie plans to continue pursuing her interest in growing
cloud technologies and serverless architecture and share her knowledge
so that others can do the same.

xi

About the Technical Reviewer

Brandon Atkinson is an accomplished technology leader with over
14 years of industry experience encompassing analysis, design,
development, and implementation of enterprise-level solutions. His
passion is building scalable teams and enterprise architecture that can
transform businesses and alleviate pain points. Brandon leads technology
projects, helping to shape the vision, providing technical thought
leadership, and implementation skills to see any project through. He has
extensive experience in various technologies/methodologies including:
Azure, AWS, .NET, DevOps, Cloud, JavaScript, Angular, Node.js, and more.
When not building software, Brandon enjoys time with his wife and
two girls in Richmond, VA.

xiii

CHAPTER 1

Understanding Serverless
Computing

Serverless architecture encompasses many things, and before jumping into creating serverless applications,
itis important to understand exactly what serverless computing is, how it works, and the benefits and use
cases for serverless computing. Generally, when people think of serverless computing, they tend to think of
applications with back-ends that run on third-party services, also described as code running on ephemeral
containers. In my experience, many businesses and people who are new to serverless computing will
consider serverless applications to be simply “in the cloud.” While most serverless applications are hosted
in the cloud, it’s a misperception that these applications are entirely serverless. The applications still run

on servers that are simply managed by another party. Two of the most popular examples of this are AWS
Lambda and Azure functions. We will explore these later with hands-on examples and will also look into
Google’s Cloud functions.

What Is Serverless Computing?

Serverless computing is a technology, also known as function as a service (FaaS), that gives the cloud
provider complete management over the container the functions run on as necessary to serve requests.

By doing so, these architectures remove the need for continuously running systems and serve as
event-driven computations. The feasibility of creating scalable applications within this architecture is huge.
Imagine having the ability to simply write code, upload it, and run it, without having to worry about any

of the underlying infrastructure, setup, or environment maintenance... The possibilities are endless, and
the speed of development increases rapidly. By utilizing serverless architecture, you can push out fully
functional and scalable applications in half the time it takes you to build them from the ground up.

Serverless As an Event-Driven Computation

Event-driven computation is an architecture pattern that emphasizes action in response to or based on the
reception of events. This pattern promotes loosely coupled services and ensures that a function executes
only when it is triggered. It also encourages developers to think about the types of events and responses a
function needs in order to handle these events before programming the function.

© Maddie Stigler 2018
M. Stigler, Beginning Serverless Computing, https://doi.org/10.1007/978-1-4842-3084-8_1

https://doi.org/10.1007/978-1-4842-3084-8_1

CHAPTER 1 * UNDERSTANDING SERVERLESS COMPUTING

In this event-driven architecture, the functions are event consumers because they are expected to
come alive when an event occurs and are responsible for processing it. Some examples of events that trigger
serverless functions include these:

e APIrequests

e Object puts and retrievals in object storage

e Changes to database items

e Scheduled events

e Voice commands (for example, Amazon Alexa)

e Bots (such as AWS Lex and Azure LUIS, both natural-language-processing engines)

Figure 1-1 illustrates an example of an event-driven function execution using AWS Lambda and a
method request to the API Gateway.

AP Gateway Amazon DynamoDB
~ Lambda

Figure 1-1. Arequest is made to the API Gateway, which then triggers the Lambda function for a response

In this example, a request to the API Gateway is made from a mobile or web application. API Gateway is
Amazon’s API service that allows you to quickly and easily make RESTful HTTP requests. The API Gateway
has the specific Lambda function created to handle this method set as an integration point. The Lambda
function is configured to receive events from the API Gateway. When the request is made, the Amazon
Lambda function is triggered and executes.

An example use case of this could be a movie database. A user clicks on an actor’s name in an
application. This click creates a GET request in the API Gateway, which is pre-established to trigger the
Lambda function for retrieving a list of movies associated with a particular actor/actress. The Lambda
function retrieves this list from DynamoDB and returns it to the application.

Another important point you can see from this example is that the Lambda function is created to handle
a single piece of the overall application. Let’s say the application also allows users to update the database
with new information. In a serverless architecture, you would want to create a separate Lambda function
to handle this. The purpose behind this separation is to keep functions specific to a single event. This keeps
them lightweight, scalable, and easy to refactor. We will discuss this in more detail in a later section.

Functions as a Service (FaaS)

As mentioned earlier, serverless computing is a cloud computing model in which code is run as a service
without the need for the user to maintain or create the underlying infrastructure. This doesn’t mean that
serverless architecture doesn’t require servers, but instead that a third party is managing these servers so
they are abstracted away from the user. A good way to think of this is as “Functions as a Service” (FaaS).
Custom event-driven code is created by the developer and run on stateless, ephemeral containers created
and maintained by a third party.

2

CHAPTER 1 * UNDERSTANDING SERVERLESS COMPUTING

FaaS is often how serverless technology is described, so it is good to study the concept in a little more
detail. You may have also heard about IaaS (infrastructure as a service), Paa$ (platform as a service), and
SaaS (software as a service) as cloud computing service models.

Iaa$ provides you with computing infrastructure, physical or virtual machines and other resources like
virtual-machine disk image library, block, and file-based storage, firewalls, load balancers, IP addresses,
and virtual local area networks. An example of this is an Amazon Elastic Compute Cloud (EC2) instance.
PaaS provides you with computing platforms which typically includes the operating system, programming
language execution environment, database, and web server. Some examples include AWS Elastic Beanstalk,
Azure Web Apps, and Heroku. SaaS provides you with access to application software. The installation and
setup are removed from the process and you are left with the application. Some examples of this include
Salesforce and Workday.

Uniquely, FaaS entails running back-end code without the task of developing and deploying your own
server applications and server systems. All of this is handled by a third-party provider. We will discuss this
later in this section.

Figure 1-2 illustrates the key differences between the architectural trends we have discussed.

é.
g

PaaS

8

QUL

5

) Froviced as a Senvice

Figure 1-2. What the developer manages compared to what the provider manages in different architectural
systems

How Does Serverless Computing Work?

We know that serverless computing is event-driven FaaS, but how does it work from the vantage point of a
cloud provider? How are servers provisioned, auto-scaled, and located to make FaaS perform? A point of
misunderstanding is to think that serverless computing doesn’t require servers. This is actually incorrect.
Serverless functions still run on servers; the difference is that a third party is managing them instead of the
developer. To explain this, we will use an example of a traditional three-tier system with server-side logic and
show how it would be different using serverless architecture.

Let’s say we have a website where we can search for and purchase textbooks. In a traditional
architecture, you might have a client, a load-balanced server, and a database for textbooks.

CHAPTER 1 * UNDERSTANDING SERVERLESS COMPUTING

Figure 1-3 illustrates this traditional architecture for an online textbook store.

=

Figure 1-3. The configuration of a traditional architecture in which the server is provisioned and managed by
the developer

In a serverless architecture, several things can change including the server and the database.
An example of this change would be creating a cloud-provisioned API and mapping specific method
requests to different functions. Instead of having one server, our application now has functions for each
piece of functionality and cloud-provisioned servers that are created based on demand. We could have a
function for searching for a book, and also a function for purchasing a book. We also might choose to split
our database into two separate databases that correspond to the two functions.

Figure 1-4 illustrates a serverless architecture for an online textbook store.

Figure 1-4. The configuration of a serverless architecture where servers are spun up and down based on
demand

There are a couple of differences between the two architecture diagrams for the online book store. One
is that in the on-premises example, you have one server that needs to be load-balanced and auto-scaled by
the developer. In the cloud solution, the application is run in stateless compute containers that are brought
up and down by triggered functions. Another difference is the separation of services in the serverless
example.

How Is It Different?

How is serverless computing different from spinning up servers and building infrastructure from the ground
up? We know that the major difference is relying on third-party vendors to maintain your servers, but how
does that make a difference in your overall application and development process? The main two differences
you are likely to see are in the development of applications and the independent processes that are used to
create them.

CHAPTER 1 * UNDERSTANDING SERVERLESS COMPUTING

Development

The development process for serverless applications changes slightly from the way one would develop a
system on premises. Aspects of the development environment including IDEs, source control, versioning,
and deployment options can all be established by the developer either on premises or with the cloud
provider. A preferred method of continuous development includes writing serverless functions using an
IDE, such as Visual Studio, Eclipse, and Intelli], and deploying it in small pieces to the cloud provider using
the cloud provider’s command-line interface. If the functions are small enough, they can be developed
within the actual cloud provider’s portal. We will walk through the uploading process in the later chapters to
give you a feel for the difference between development environments as well as the difference in providers.
However, most have a limit on function size before requiring a zip upload of the project.

The command-line interface (CLI) is a powerful development tool because it makes serverless
functions and their necessary services easily deployable and allows you to continue using the development
tools you want to use to write and produce your code. The Serverless Framework tool is another
development option that can be installed using NPM, as you will see in greater detail later in the chapter.

Independent Processes

Another way to think of serverless functions is as serverless microservices. Each function serves its own
purpose and completes a process independently of other functions. Serverless computing is stateless
and event-based, so this is how the functions should be developed as well. For instance, in a traditional
architecture with basic API CRUD operations (GET, POST, PUT, DELETE), you might have object-based
models with these methods defined on each object. The idea of maintaining modularity still applies in
the serverless level. Each function could represent one API method and perform one process. Serverless
Framework helps with this, as it enforces smaller functions which will help focus your code and keep it
modular.

Functions should be lightweight, scalable, and should serve a single purpose. To help explain why the
idea of independent processes is preferred, we will look at different architectural styles and the changes that
have been made to them over time. Figure 1-5 illustrates the design of a monolithic architecture.

Figure 1-5. This figure demonstrates the dependency each functionally distinct aspect of the system has on another

CHAPTER 1 * UNDERSTANDING SERVERLESS COMPUTING

A monolithic application is built as a single interwoven unit with a server-side application that handles
all requests and logic associated with the application. There are several concerns with this architecture
model. A concern during the development period might be that no developer has a complete understanding
of the system, because all of the functionality is packaged into one unit. Some other concerns include
inability to scale, limited re-use, and difficulty in repeated deployment.

The microservices approach breaks away from the monolithic architecture pattern by separating
services into independent components that are created, deployed, and maintained apart from one another.
Figure 1-6 illustrates the microservices architecture.

Figure 1-6. This figure demonstrates the independent services that make up a microservices architecture

Many of the concerns that we saw with the monolithic approach are addressed through this solution.
Services are built as individual components with a single purpose. This enables the application to be
consumed and used by other services more easily and efficiently. It also enables better scalability as you can
choose which services to scale up or down without having to scale the entire system. Additionally, spreading
functionality across a wide range of services decreases the chance of having a single point of failure within
your code. These microservices are also quicker to build and deploy since you can do this independently
without building the entire application. This makes the development time quicker and more efficient, and
also allows for faster and easier development and testing.

Benefits and Use Cases

One thing many developers and large businesses struggle with about serverless architecture is giving cloud
providers complete control over the platform of your service. However, there are many reasons and use
cases that make this a good decision that can benefit the overall outcome of a solution. Some of the benefits
include these:

e Rapid development and deployment
e Easeofuse

e Lower cost

e Enhanced scalability

e No maintenance of infrastructure

CHAPTER 1 * UNDERSTANDING SERVERLESS COMPUTING

Rapid Development and Deployment

Since all of the infrastructure, maintenance, and autoscaling are handled by the cloud provider, the
development time is much quicker and deployment easier than before. The developer is responsible only
for the application itself, removing the need to plan for time to be spent on server setup. AWS, Azure, and
Google also all provide function templates that can be used to create an executable function immediately.
Deployment also becomes a lot simpler, thus making it a faster process. These cloud providers have
built-in versioning and aliasing for developers to use to work and deploy in different environments.

Ease of Use

One of the greater benefits in implementing a serverless solution is its ease of use. There is little ramp-up
time needed to begin programming for a serverless application. Most of this simplicity is thanks to services,
provided by cloud providers, that make it easier to implement complete solutions. The triggers that are
necessary to execute your function are easily created and provisioned within the cloud environment, and
little maintenance is needed.

Looking at our event-driven example from earlier, the API gateway is completely managed by AWS
but is easily created and established as a trigger for the Lambda function in no time. Testing, logging, and
versioning are all possibilities with serverless technology and they are all managed by the cloud provider.
These built in features and services allow the developer to focus on the code and outcome of the application.

Lower Cost

For serverless solutions, you are charged per execution rather than the existence of the entire applications.
This means you are paying for exactly what you're using. Additionally, since the servers of the application are
being managed and autoscaled by a cloud provider, they also come at a cheaper price than what you would
pay in house. Table 1-1 gives you a breakdown of the cost of serverless solutions across different providers.

Table 1-1. Prices for Function Executions by Cloud Provider as of Publication

AWS Lambda Azure Functions Google Cloud Functions

First million requests a month First million requests a month free First 2 million requests a month
free free

$0.20 per million requests $0.20 per million requests $0.40 per million requests
afterwards afterwards afterwards

$0.00001667 for every GB-second $0.000016 for every GB-second $0.000025 for every GB-second
used used used

Enhanced Scalability

With serverless solutions, scalability is automatically built-in because the servers are managed by third-party
providers. This means the time, money, and analysis usually given to setting up auto-scaling and balancing
are wiped away. In addition to scalability, availability is also increased as cloud providers maintain compute
capacity across availability zones and regions. This makes your serverless application secure and available as
it protects the code from regional failures. Figure 1-7 illustrates the regions and zones for cloud providers.

CHAPTER 1 * UNDERSTANDING SERVERLESS COMPUTING

MS Arare S Google
Q@ tusting Region Q Exatngregon) EustngRegion @ Existeg fegion
Franned Pegion @ Pancedfegon () PanesdRegion (3 PlannedPegion

Figure 1-7. This figure, from blog. fugue.co, demonstrates the widespread availability of serverless functions
across cloud providers

Cloud providers take care of the administration needed for the compute resources. This includes
servers, operating systems, patching, logging, monitoring, and automatic scaling and provisioning.

Netflix Case Study with AWS

Netflix, a leader in video streaming services with new technology, went with a serverless architecture
to automate the encoding process of media files, the validation of backup completions and instance
deployments at scale, and the monitoring of AWS resources used by the organization.

To apply this, Netflix created triggering events to their Lambda functions that synchronized actions
in production to the disaster recovery site. They also made improvements in automation with their
dashboards and production monitoring. Netflix accomplished this by using the triggering events to prove
the configuration was actually applicable.

CHAPTER 1 * UNDERSTANDING SERVERLESS COMPUTING

Limits to Serverless Computing

Like most things, serverless architecture has its limits. As important as it is to recognize when to use serverless
computing and how to implement it, it is equally important to realize the drawbacks to implementing
serverless solutions and to be able to address these concerns ahead of time. Some of these limits include

e You want control of your infrastructure.

e You're designing for a long-running server application.

e You want to avoid vendor lock-in.

e You are worried about the effect of “cold start.”

e You want to implement a shared infrastructure.

e There are a limited number of out-of-the-box tools to test and deploy locally.

We will look at options to address all of these issues shortly. Uniquely, FaaS entails running back-end
code without the task of developing and deploying your own server applications and server systems. All of
this is handled by a third-party provider.

Control of Infrastructure

A potential limit for going with a serverless architecture is the need to control infrastructure. While cloud
providers do maintain control and provisioning of the infrastructure and OS, this does not mean developers
lose the ability to determine pieces of the infrastructure.

Within each cloud provider’s function portal, users have the ability to choose the runtime, memory,
permissions, and timeout. In this way the developer still has control without the maintenance.

Long-Running Server Application

One of the benefits of serverless architectures is that they are built to be fast, scalable, event-driven functions.
Therefore, long-running batch operations are not well suited for this architecture. Most cloud providers have
a timeout period of five minutes, so any process that takes longer than this allocated time is terminated. The
idea is to move away from batch processing and into real-time, quick, responsive functionality.

If there is a need to move away from batch processing and a will to do so, serverless architecture is a
good way to accomplish this. Let’s take a look at an example. Say we work for a travel insurance company
and we have a system that sends a batch of all flights for the day to an application that monitors them and
lets the business know when a flight is delayed or cancelled. Figure 1-8 illustrates this application.

U
—»ﬁi—».’_

Figure 1-8. The configuration of a flight monitoring application relying on batch jobs

CHAPTER 1 * UNDERSTANDING SERVERLESS COMPUTING

To modify this to process and monitor flights in real time, we can implement a serverless solution.
Figure 1-9 illustrates the architecture of this solution and how we were able to convert this long-running
server application to an event-driven, real-time application.

DS A

Figure 1-9. The configuration of a flight monitoring application that uses functions and an API trigger to
monitor and update flights

This real-time solution is preferable for a couple of reasons. One, imagine you receive a flight you want
monitored after the batch job of the day has been executed. This flight would be neglected in the monitoring
system. Another reason you might want to make this change is to be able to process these flights quicker.

At any hour of the day that the batch process could be occurring, a flight could be taking off, therefore
also being neglected from the monitoring system. While in this case it makes sense to move from batch to
serverless, there are other situations where batch processing is preferred.

Vendor Lock-In

One of the greatest fears with making the move to serverless technology is that of vendor lock-in. This is a
common fear with any move to cloud technology. Companies worry that by committing to using Lambda,
they are committing to AWS and either will not be able to move to another cloud provider or will not be able
to afford another transition to a cloud provider.

While this is understandable, there are many ways to develop applications to make a vendor switch
using functions more easily. A popular and preferred strategy is to pull the cloud provider logic out of
the handler files so it can easily be switched to another provider. Listing 1-1 illustrates a poor example of
abstracting cloud provider logic, provided by serverlessframework.com.

Listing 1-1. A handler file for a function that includes all of the database logic bound to the FaaS provider
(AWS in this case)

const db = require('db"').connect();
const mailer = require('mailer');

module.exports.saveUser = (event, context, callback) => {
const user = {

email: event.email,

created at: Date.now()

}

10

CHAPTER 1 * UNDERSTANDING SERVERLESS COMPUTING

db.saveUser(user, function (err) {

if (err) {
callback(err);

} else {
mailer.sendWelcomeEmail(event.email);
callback();

}

D;

};

The code in Listing 1-2 illustrates a better example of abstracting the cloud provider logic, also provided
by serverlessframework.com.

Listing 1-2. A handler file that is abstracted away from the FaaS$ provider logic by creating a separate Users
class

class Users {
constructor(db, mailer) {
this.db = db;
this.mailer = mailer;

}

save(email, callback) {
const user = {

email: email,

created at: Date.now()

}

this.db.saveUser(user, function (err) {

if (err) {
callback(err);
} else {
this.mailer.sendWelcomeEmail(email);
callback();
}

};

}

}

module.exports = Users;

const db = require('db"').connect();
const mailer = require('mailer');
const Users = require('users');

let users = new Users(db, mailer);

module.exports.saveUser = (event, context, callback) => {
users.save(event.email, callback);

};

11

CHAPTER 1 * UNDERSTANDING SERVERLESS COMPUTING

The second method is preferable both for avoiding vendor lock-in and for testing. Removing the cloud
provider logic from the event handler makes the application more flexible and applicable to many providers.
It also makes testing easier by allowing you to write traditional unit tests to ensure it is working properly. You
can also write integration tests to verify that integrations with other services are working properly.

“Cold Start”

The concern about a “cold start” is that a function takes slightly longer to respond to an event after a period
of inactivity. This does tend to happen, but there are ways around the cold start if you need an immediately
responsive function. If you know your function will only be triggered periodically, an approach to
overcoming the cold start is to establish a scheduler that calls your function to wake it up every so often.

In AWS, this option is CloudWatch. You can set scheduled events to occur every so often so that your
function doesn’t encounter cold starts. Azure and Google also have this ability with timer triggers. Google
does not have a direct scheduler for Cloud functions, but it is possible to make one using App Engine Cron,
which triggers a topic with a function subscription. Figure 1-10 illustrates the Google solution for scheduling
trigger events.

App Engine

App Engine Cron

| 1

App Engine App

I

Cloud Pub/Sub
Topic

Subscription

Cloud Functions

Pub/Sub Function

Figure 1-10. This diagram from Google Cloud demonstrates the configuration of a scheduled trigger event
using App engine’s Cron, Topic, and Cloud functions

An important point to note about the cold start problem is that it is actually affected by runtime and
memory size. C# and Java have much greater cold start latency than runtimes like Python and Node.js. In
addition, memory size increases the cold start linearly (the more memory you're using, the longer it will take
to start up). This is important to keep in mind as you set up and configure your serverless functions.

12

CHAPTER 1 * UNDERSTANDING SERVERLESS COMPUTING

Shared Infrastructure

Because the benefits of serverless architecture rely on the provider’s ability to host and maintain the
infrastructure and hardware, some of the costs of serverless applications also reside in this service. This
can also be a concern from a business perspective, since serverless functions can run alongside one
another regardless of business ownership (Netflix could be hosted on the same servers as the future Disney
streaming service). Although this doesn’t affect the code, it does mean the same availability and scalability
will be provided across competitors.

Limited Number of Testing Tools

One of the limitations to the growth of serverless architectures is the limited number of testing and
deployment tools. This is anticipated to change as the serverless field grows, and there are already some up-
and-coming tools that have helped with deployment. I anticipate that cloud providers will start offering ways
to test serverless applications locally as services. Azure has already made some moves in this direction, and
AWS has been expanding on this as well. NPM has released a couple of testing tools so you can test locally
without deploying to your provider. Some of these tools include node-lambda and aws-lambda-local. One
of my current favorite deployment tools is the Serverless Framework deployment tool. It is compatible with
AWS, Azure, Google, and IBM. 1 like it because it makes configuring and deploying your function to your
given provider incredibly easy, which also contributes to a more rapid development time.

Serverless Framework, not to be confused with serverless architecture, is an open source application
framework that lets you easily build serverless architectures. This framework allows you to deploy
auto-scaling, pay-per-execution, event-driven functions to AWS, Azure, Google Cloud, and IBM’s
OpenWhisk. The benefits to using the Serverless Framework to deploy your work include

e Fast deployment: You can provision and deploy quickly using a few lines of code in
the terminal.

e Scalability: You can react to billions of events on Serverless Framework; and you can
deploy other cloud services that might interact with your functions (this includes
trigger events that are necessary to execute your function).

e Simplicity: The easy-to-manage serverless architecture is contained within one yml
file that the framework provides out of the box.

e Collaboration: Code and projects can be managed across teams.

Table 1-2 illustrates the differences between deployment with Serverless Framework and manual
deployment.

Table 1-2. Comparing the configuration of a scheduled trigger event using App engine Cron, Topic, and Cloud
Junctions in a serverless and a manual deployment

Function Serverless vs Manual Deployment
Serverless Framework Manual Deployment
Cron Security out of the box Security built independently
Topic Automatic creation of services Services built independently
Cloud Reproduction resources created Reproduction resources have to be created separately

Pre-formatted deployment scripts Write custom scripts to deploy function

13

CHAPTER 1 * UNDERSTANDING SERVERLESS COMPUTING

The figure gives you a good overview of the Serverless Framework and the benefits to using it. We will get
some hands-on experience with Serverless later, so let’s look into how it works. First, Serverless is installed
using NPM (node package manager) in your working directory. NPM unpacks Serverless and creates a
serverless.yml file in the project folder. This file is where you define your various services (functions), their
triggers, configurations, and security. For each cloud provider, when the project is deployed, compressed files
of the functions’ code are uploaded to object storage. Any extra resources that were defined are added to a
template specific to the provider (CloudFormation for AWS, Google Deployment Manager for Google, and
Azure Resource Manager for Azure). Each deployment publishes a new version for each of the functions in
your service. Figure 1-11 illustrates the serverless deployment for an AWS Lambda function.

Lambda
a DynamoDgl

7z

SERVER#LESS I m
53

CloudFormation

Tkl M
l J g AP| Gateway

Figure 1-11. This figure demonstrates how Serverless deploys an application using CloudFormation, which
then builds out the rest of the services in the configured project

Serverless Platform is one of the leading development and testing tools for serverless architecture. As
serverless technology progresses, more tools will come to light both within the cloud provider’s interfaces
and outside.

Conclusion

In this chapter you learned about serverless applications and architecture, the benefits and use cases, and
the limits to using the serverless approach. It is important to understand serverless architecture and what
it encompasses before designing an application that relies on it. Serverless computing is an event-driven,
functions-as-a-service (FaaS) technology that utilizes third-party technology and servers to remove the
problem of having to build and maintain infrastructure to create an application. The next chapter will
discuss the differences between the three providers we're exploring (AWS, Azure, Google), development
options, and how to set up your environment.

14

CHAPTER 2

Getting Started

In order to get started developing serverless applications, we need to look at the serverless offerings and
environments for AWS, Azure, and Google, our choices for development platforms and toolkits, and how

to set up our environment for them. As discussed in the previous chapter, serverless doesn’t mean that no
servers are involved, but rather the servers are hosted by different third-party providers. Some of the most
prevalent providers for this serverless option include AWS, Azure, and Google. We will examine how the
serverless options differ from provider to provider. We will also walk through the environment setup process
using Visual Studio Code, Node.js, and Postman.

Note There are many different development tools, environments, and SDKs that can be used to develop
serverless applications. We will go over a couple other options in this chapter and later discuss why we will be
using the ones specific to this tutorial.

What Each Provider Offers

Amazon Web Services, Microsoft Azure, and Google Cloud Platform are three of the most prevalent third-party
providers for serverless technology. In this chapter, we will discuss the serverless options for each and how they
are different from one another. This will give you a better understanding of each offering to help you choose
between cloud providers when you write your own serverless applications.

AWS Lambda

Amazon’s serverless offering is AWS Lambda. AWS was the first major cloud provider to offer serverless
computing, in November 2014. Lambda was initially available only with a Node.js runtime, but now it offers
C#, Java 8, and Python. Lambda functions are built independently from other resources but are required

to be assigned to an IAM (Identity and Access Management) role. This role includes permissions for
CloudWatch, which is AWS’s cloud monitoring and logging service. From the Lambda console, you can view
various metrics on your function. These metrics are retained within the CloudWatch portal for thirty days.
Figure 2-1 illustrates the CloudWatch logging metrics that are available.

© Maddie Stigler 2018 15
M. Stigler, Beginning Serverless Computing, https://doi.org/10.1007/978-1-4842-3084-8_2

https://doi.org/10.1007/978-1-4842-3084-8_2

CHAPTER 2 © GETTING STARTED

i C @ Secure hitps//console.sws. amazon.com/lambdahomeTregionsus-east- 18/functionsielloWorldtabe manitoring «# 009 ¢
! Apps (y Workday captech B Learning Locker & Developer - Intesm._ ACloud Gura [Uiniedin ([2017 intern Progra_. 63 AWS Al Blog) GitHub 7 FlightSaats Develop_. @ Alexa g Coke-Echo - GitLab
B8 Services v Resource Groups ~ 3 I API Gateway
AWS Lambda Qualifiers. ~ Actions ~
“
Dashboard Code Configuration Triggers Tags Monitering [7]
Functions
View traces in X-Ray@
CloudWatch metrics at a glance (last 24 hours) & View logs in CloudWatch@
Invocation count = Invocation duration <= Invocation errors [+
@ Throttled invocations] Iterator age] DLQ errors o

Figure 2-1. Monitoring logs that are available in CloudWatch. As you can see, for this Hello World function,
we don’t have any invocations in the past 24 hours. There are even more logging metrics that can be seen from
the CloudWatch portal.

AWS Lambda functions can be written in the AWS console; however, this is not recommended for larger
projects. Currently, you cannot see the project structure within the console. You can only see the index.js
file, or the function that is handling the event. This makes it difficult to develop within the console. While
you can still export the files from the console to view the file structure, you are then back to being limited by
the deployment and testing process.

Lambda has built-in Versioning and Aliasing tools that can be utilized straight from the console as well.
These tools let you create different versions of your function and alias those versions to different stages. For
instance, if you're working with a development, testing, and production environment, you can alias certain
versions of your Lambda function to each to keep these environments separate. Figure 2-2 illustrates an
example of aliasing a version of your function.

16

CHAPTER 2 © GETTING STARTED

i @ Secure hitps:/joonscle.sws.amazon.comlambdamome?region=us-sast- 18/functionsielloWorldTtabscode *# 009 ¢
! Apos 4 Workday captech B Learning Locksr & Developer - Inteem. ACioud Gure) Uniedin ([2017 imtern Progra. §3 AWS Al Blog () GitHub A7 FlightSzats Develop.. @ Alexa g Coke-Echo - GitLab
§# Sorvices » Resource Groups ~ Lambda il APIGateway
AWS Lambda Lambda > Functions 3 hellcWorkd ARN - am:awsclambda:us-gast-1:174208833209 function:helloWorid
4
Dashboard | Quaiifiors & | Actions ~
Functions
Swilch verslonaaliases
Togs Monitoring 0

action “helioWorld” is too large to enable inling code editing, However, you can still invoke your function right now.

Unquakified @ o Upload a .2IP file -

DEV
Saveiopment ervironment

X Upload

For fios lager than 10 MB, consider uploading via 53,
You can define Emvironment Variables as key-value pairs that are accessitle from your function code. These are useful to store configuration Settings without the need 1o change function
code. Leam more. For storing sanstive infonmation, we recommend encrypting values using KMS and the conscla’s encryption helpars.

Erable encryption heipers

Environment variables - W =

Figure 2-2. This illustrates a DEV alias that is always pointing at the $Latest version of the function. $Latest
simply indicates the most up-to-date version of the Lambda function.

AWS Lambda also makes it easy to incorporate environment variables. These can be set using a key/
value pair, so you can use variables throughout your function to reference protected information such as API
keys and secrets, as well as database information. They also give you a better way to pass variables to your
function without having to modify your code in several areas. For example, if a key changes, you only need to
change it in one spot.

Azure Functions

Microsoft released its serverless offering, Azure Functions, at the Build conference in 2016. Despite being
developed only a year and a half after AWS Lambda, Azure Functions remains a strong competitor in the
serverless world. Azure Functions supports JavaScript, C#, F#, Python, PHP, Bash, Batch, and PowerShell.
One of Azure’s strengths is its ability to integrate Application Insights with your functions. While AWS
also has this capability, integrating X-Ray with Lambda, it is important to point out the power of Application
Insights. This extensible Application Performance Management tool for developers can be used across many
platforms. It uses powerful monitoring tools to help you understand potential performance weaknesses in
your application. Figure 2-3 illustrates Application Insights being used for live monitoring of an application.

17

CHAPTER 2 © GETTING STARTED

€ C @ Secure hitps.//portal.azure.com/Tw ve.comdblade/Ap QuickPulseBladeV2)Componentid /%7 B% 2 2Subscriptionkd%2 7% 2A% 220 1c32a2B-cdd 1 -dccd-abbe-fel.. & O O
Lesmning Locker & Developss - Interm.. ACkud Gury [Lirkean [2007 Progra... AWS Al Blog () GitHeb 7 FighiStats Deveicp.. 8 Alexa & Coke-Echo - Gitlab

= Incoming Requests #rn IiPase 1 server arine Sample Telemetry T

= Requests/Sec Riquesst Duration (ms) Riquesits Falied/Sec
@
L cor—
¥
= QOutgoing Requests No telemetry yet
L] Dependency Cally/Sec Dependiency Call Duration (ms] Depuerddencies. Faded/Sec
¥
.
]
¢ —_—
.
= Overall Health
Commited Memary (M8) Process CPU (sum of % across ol cores) Ewceptions/Sec.

¢ —
® To view detalls please select & document from the above fist
4

— — —_—
w
[- Servers @ st columns

SERVER NAME RIQUESTS. REGUESTS FAILID OPUTOTAL COMMITTED MEMO. ..

Figure 2-3. Live Metrics Streaming monitors incoming requests, outgoing requests, overall health, and servers
used to handle requests. You can see how long the requests take and how many requests fail. You can use these
statistics to adjust the memory and response of your function.

Another aspect of Azure functions is that they are built within resource groups, containers used to hold
all related resources for an Azure solution. It is up to the developer to determine how the resources are
grouped and allocated, but it generally makes sense to group the resources of an application that share the
same life cycle so they can be deployed, updated, and deleted together. Lambda functions are organized
independently. They aren’t required to belong to a resource group, but instead can be developed completely
separately from any other AWS resources.

One of the potential limitations to serverless functions that we discussed in Chapter 1 was the fear of the
“cold start” Azure functions run on top of WebJobs, which means the function files aren’t just sitting in a zip
file. They are built on top of WebJobs to more easily host long or short back-end processes.

Azure functions are also integrated with several continuous deployment tools, such as Git, Visual Studio
Team Services, OneDrive, Dropbox, and Azure’s own built-in editor. Visual Studio Team Services (previously
Visual Studio Online) is a powerful tool for continuous integration of your functions with a team. The tight
integration with Visual Studio Team Services means you can configure the connection to Azure and deploy
very easily. It also gives you free Azure function templates out of the box to speed up the development
process even further. Currently, this integration is not something that either AWS or Google Cloud provide.
Itincludes Git, free private repos, agile development tools, release management, and continuous integration.

18

http://dx.doi.org/10.1007/978-1-4842-3084-8_1

CHAPTER 2 © GETTING STARTED

Google Cloud Functions

Google Cloud released its serverless offering, Google Cloud Functions, in February of 2016. Currently,
Google Cloud supports only a JavaScript runtime with only three triggers.

Note It is important to keep in mind that, at this writing, Google Cloud Functions is still in its Beta release.
A lot of its functionality and environment is subject to change with more development to its service offering
expected.

Google Cloud Functions has automatic logging enabled and written to the Stackdriver Logging tool. The
logs remain in Stackdriver for up to thirty days and log real-time insights as well as custom logs. In addition,
performance is recorded in Stackdriver Monitoring and the Stackdriver Debugger allows you to debug your
code’s behavior in production. With Google Cloud Functions you can also use Cloud Source repositories to
deploy functions directly from a GitHub or bitbucket repository. This cuts down on time that would be spent
manually zipping and uploading code through the console. It also allows you to continue using your form of
version control as you would before.

A unique aspect of Google Cloud Functions is its integration with Firebase. Mobile developers can
seamlessly integrate the Firebase platform with their functions. Your functions can respond to the following
events generated by Firebase:

e Real-time database triggers

e Firebase authentication triggers

e Google Analytics for Firebase triggers
e Cloud storage triggers

e Cloud pub/sub triggers

e HTTP triggers

Cloud Functions minimizes boilerplate code, allowing you to easily integrate Firebase and Google
Cloud within your functions. There is also little or no maintenance associated with Firebase. By deploying
your code to functions, the maintenance associated with credentials, server configuration, and the
provisioning and supply of servers goes away. You can also utilize the Firebase CLI to deploy your code and
the Firebase console to view and sort logs.

To be able to run and test your code locally, Google Cloud provides a function emulator. This is a Git
repository that allows you to deploy, test, and run your functions on your local machine before deploying it
directly to Google Cloud.

A difference between the Google Cloud platform and Azure or AWS is the heavy reliance on APIs for
each service. This is similar to the Software Development Kits used in AWS and Azure; however, it is more
low-level. Google Cloud relies on API client libraries to obtain service functionality. These APIs allow you to
access Google Cloud platform products from your code and to automate your workflow. You can access and
enable these APIs through the API Manager Dashboard, shown in Figure 2-4.

19

CHAPTER 2 © GETTING STARTED

Legacy Cloud Source fepcsitodies API Private AP

€ C @ Secure htps:|/conscle cloud google.com)agis)d fproject=loyal-curve- 1076238 duration=PT1H *+ 00
! apps g Workday captech B Learning Locker & Developer - Interm._ A Cloud Guru [Linkedin [T 2017 intern Progra. &) AWS Al Blog () Github A FlightStats Develop.. 8 Alexa by Coke-Echo - GitLab -
5 ou have $300.00 in credit and 330 days keft in your free tria DISMISS
Google Cloud Flatform = helioworld =
APL API D ENABLE API
9 Peshboen Enabled APIs
Sorme APrs are erabied automatcally
W Ly
Actvity for the last hour T1howr Ehowrs 1lhours Tdey Idays ddays Tdays dcdes Wdan
ov Credentials iec
Traffic Errors Median latency
Requete/ pes Parcent of reguests Millipecords
here is no traffic for this time period. There are na efrors for this time period There is no latency data,
A = Baqueats Emory Error ratie. Lunency, median Lanency, 8%
Oesagle Cloud Functions AP Disatle
Googhe Cloud Pub/Sus API Disadie
Google Cloud Storage Disable
Google Cloud Storage JSON AP| Disable
Disadie
Disatde

Stackdeiver | noing AP - - - - -

Figure 2-4. The API Manager Dashboard shows all of your currently enabled APIs, along with the requests,
errors, latency, and traffic associated with those APIs. The dashboard statistics go back thirty days.

Explore Triggers and Events

Chapter 1 gave an overview of triggers and events and how they fit into the larger idea of serverless
architecture. In this section we will examine what triggers are, how they work with different cloud providers
and within real-world examples, and how events drive serverless functions.

What Are Triggers?

Triggers are simply events. They are services and HTTP requests that create events to wake up the functions
and initiate a response. Triggers are usually set within the function console or the command-line interface
and are typically created within the same cloud provider’s environment. A function must have exactly one
trigger.

In AWS a trigger can be an HTTP request or an invocation of another AWS service. Azure functions
utilize service triggers as well, but they also capture the idea of bindings. Input and output bindings offer a
declarative way to connect to data from within your code. Bindings are not unlike triggers in that you, as the
developer, specify connection strings and other properties in your function configuration. Unlike triggers,
bindings are optional and a function can have many bindings. Table 2-1 illustrates the input and output
bindings that Azure supports for its functions.

20

http://dx.doi.org/10.1007/978-1-4842-3084-8_1

CHAPTER 2 © GETTING STARTED

Table 2-1. Input/Output Bindings for Azure Functions

Input Output

HTTP (REST or Webhook)
Blob Storage Blob Storage

Events

Queues

Queues and Topics

Storage Tables Storage Tables
SQL Tables SQL Tables
NoSQL DB NoSQL DB
Push Notifications
Twilio SMS Text
SendGrid Email

An example of an application binding a trigger to a function is writing to a table with an API request.
Let’s say we have a table in Azure storing employee information and whenever a POST request comes in with
new employee information, we want to add another row to the table. We can accomplish this using an HTTP
trigger, an Azure function, and Table output binding.

By using the trigger and binding, we can write more generic code that doesn’t make the function rely on
the details of the services it interacts with. Incoming event data from services become input values for our
function. Outputting data to another service, such as adding a row to a table in Azure Table Storage, can be
accomplished using the return value of our function. The HTTP trigger and binding have a name property
that works as an identifier to be used in the function code to access the trigger and binding.

The triggers and bindings can be configured in the integrate tab in the Azure Functions portal. This
configuration is reflected in the function. json file in the function directory. This file can also be configured
manually in the Advanced Editor. Figure 2-5 shows the integration functionality with the input and output
settings that can be configured.

C @ Secure hitps://portal.azune.com « 00

£ Apps y Workday copn Learsing Lockar & Davelcpsr - Intarm. ACwoud Gy [Unkes [3017 imern Progrs.

aWS Al liog) GitMub A7 Fighistats Develop.. @ Alxa byl Coke-fcha - GirLab

£ *begincingServeries” » ¥ Aatvanced penoe
Triggers @ Inpuis @ Outputs @
- A8 pbmeriotoes.
= Function Apps TP () A ew ITTP (o)
w o begringSenedess c% + P Oopun
- = Furctons +
L]
w [eipTriggeris]
L
¥ Integran
= © Manege Azure Table Storage output (outputTable)
* O, Maritor Tabie paraeser rave © Table e ©
L w I Proces (preview) + oxtputTable outTable
b IS S (previen) Ui Bonetion setarn
* = s +
|
o
Carced
+*

Figure 2-5. The triggers, inputs, and outputs that can be set and configured witin the Azure portal
21

CHAPTER 2 © GETTING STARTED

The ability to configure outputs using bindings within Azure is something that isn’t available with
every cloud provider, but having specific outputs based on the reception of trigger events is a concept that
is embraced by other cloud providers and one that fits the idea of creating serverless functions to perform
single operations.

Triggers within Cloud Providers

Different cloud providers offer different triggers for their functions. While many of them are essentially
the same service with a different name based on the provider, some are truly unique. Table 2-2 shows the
triggers for the providers we will be using.

Table 2-2. Function triggers for AWS, Azure, and Google

AWS Lambda Azure Functions Google Cloud Functions

Amazon S3 Azure Storage
Amazon DynamoDB

Amazon Kinesis Stream Azure Event Hubs
Amazon Simple Notification Service Queues and Topics Google Cloud Pub/Sub triggers
Amazon Simple Email Service

Amazon Cognito

AWS CloudFormation

Amazon CloudWatch Logs

Amazon CloudWatch Events

AWS CodeCommit

Scheduled Events Azure Schedule
AWS Config

Amazon Alexa

Amazon Lex

Amazon API Gateway HTTP (REST or WebHook) HTTP

Development Options, Toolkits, SDKs

In this section, we will look at the various development options, toolkits, and SDKs that can be used to
develop serverless applications. Specifically, we will discuss Typescript with Node.js, AWS SDKs, Azure SDK,
and the Cloud SDK for Google.

TypeScript with Node.]S

TypeScript is a superset of JavaScript that was developed by Microsoft to develop strongly typed language
that compiles to JavaScript. It starts with the same syntax that developers who work with JavaScript know
and use today. TypeScript compiles directly to JavaScript code that runs on any browser in many JavaScript
engines, including Node.js.

22

CHAPTER 2 © GETTING STARTED

TypeScript enables developers to build JavaScript applications that will also include static checking and
code refactoring. Figure 2-6 illustrates an example of compiling TypeScript to JavaScript.

EXPLORER
4 OPEN EDITORS
serveriessyml SecveriessOl.
handier.ts ServeressDemo/—
handler o
handler.ts

handler.ts Serverens!
handler.js 5
handler.ts Se
RIGHT

handlerjs ServoriessOemoy..
4 SERVERLESSREPO
4 SarverlessDemo
CroateEmployees
handler.js
handler.js.map
handier.ts
+ DeleteEmployees
handler.js
handlerjs.mag
handler.ts
+ node_madules
+ ReadEmployes
handler.js
handier.js.magp
handier.ts
4 ReadEmployees
handier js
handler.js.mag
handler.ts
* Shared
* UpdateEmployoes
handler js
handler.js.map
handler.ts
qitignore
packaga json

serveriess.ymi

5.yl handler.ts ResdEmpieyee X handier.ts

‘use strict’;

imgort { } from “../Shared/Mod
import = as AWS from “sws-sdk®;

import = as querystring from “querystring™;

module.exports.ReadEmployes = (event, context, callback) == {
console. infol"Received event: ", JSON.stringifylevent, nul
let docClient = new AWS.DynasoDB.DocusentClienti)
let table = process.env. TABLE NAME;

let response = {
statusCode: 209,
message: "7

e

let parass = {
Tableane: table,
Key:{
“Lasthane": event.Lasthase
¥

b

docClient.get(params, function(err, data) {
if (err) {

consale.error(“Unable to read item. Error JSON:™, .

response. statusCode = 508;
response.message = “Cannot find employee = + event
callback(null, responsel;

} else if (data.Ttem == null) {
respanse. statusCode = 404;
response.message = “Cannot find employee = + event
callbackinull, response];

Jelse

consale, logi Getlten succesded:™, JSON.stringifyld:
+ JSON. 5

response.message = “Employee retrieved:
callbackinull, responsel;

handier. s

‘use strict's b
Object.def inePropertylexports, ~_esModule”, { value: true bj
const AWS = require(“aws-sdk"};

module.exports.ReadEnployee = (event, context, callback) == {

" -

consale, infol“Recedived event: *, JSON.stringifylevent, nul
let docClient = new AnS.DynanoDB.Docusentlientil;
let table = process.env. TABLE_NAME;
let response = {
statusCode: 209,
message: "
LB
let paroms = {
TadleNase: table,

“LastNase": event.LastHame
}

L H
docClient.getiparams, function (err, data) {
it lerr) {
console.error(“Unable to read ites, Error JSOW:",
response. statusCode = 508;
response. message = “Cannot find esployes * + event
callbackinull, responsel;
1]

else if (data.Ttes == mll) {
respanse. statusCode = 484
response.message = “Cannot find esployee * + event
callback(null, response);

3
else {
consale. logl“Getltes succeeded:™, JSON.stringifyla
response.message = “Exployes retrieved: * + JSON.s
callbackinull, response);
3
i

#/# sourceMappingURL=handler. |s.map

26 Spaces4 UTF-8 LF

Figure 2-6. This figure demonstrates the use of TypeScript to create a Create Employee function and how it
compiles to JavaScript code that can be used to build serverless applications.

TypeScript can be downloaded using NPM or Visual Studio plug-ins. From the terminal/command
prompt, you can install TypeScript with the command npm install -g typescript. This gives you access
to the TypeScript tools. In Visual Studio, TypeScript is included by default; so I recommend installing Visual
Studio Code at this point if needed.

Once TypeScript is installed, you can begin writing TypeScript files and compiling them either using the

command line:

tsc helloWorld.ts

or by building the project in Visual Studio. Once the TypeScript files have compiled, you will see JavaScript
files created from the TypeScript files.

23

CHAPTER 2 * GETTING STARTED

AWS SDK

Software development kits (SDKs) are powerful tools for developing serverless applications. AWS, Azure,
and Google each have an SDK with which developers can easily access and create services within each cloud
provider. AWS offers SDKs for all of the following programming languages and platforms:

e Android

° Browser

e iOS

e Java

e . NET

e Node.js
e Ruby

e Python
e PHP

e Go

° C++

e AWS Mobile
e AWSIoT
To install the AWS SDK, simply type this command at your command prompt:
npm install aws-sdk
Before you can do this, you will need to have NPM installed. Node Package Manager takes care of the

installation for you and makes it accessible in your projects. Figure 2-7 illustrates how the AWS SDK works
with Node.js to deliver accessible AWS services to your code.

-
nede ‘ .
Amazon EC2
= o TN ? £ (= .
.IE AWS mnwa Mmaa Amaron SOS
AWS SDK
for JavaScript .
v
Browser scripts Amaron Amazon
- -
JavaScript environments Amazon Web Services

Figure 2-7. This figure illustrates how the AWS SDK for JavaScript allows you to build full-scale applications
that utilize the services that AWS has to offer with little effort

24

CHAPTER 2 © GETTING STARTED

After installing the SDK, you will need to do some configuration within your Node.js files to load the
AWS package into the application. The way to do this is by using the require statement at the top of your
JavaScript. The code should look like this:

var AWS = require('aws-sdk');

You can then access the various AWS resources using the AWS variable you created and the API
reference materials that can be found here:

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/index.html

This documentation will show you how to create and access particular services. The following example
code shows how you can create a table in DynamoDB using the AWS SDK.

'use strict';
Object.defineProperty(exports, " esModule", { value: true });
var AWS = require("aws-sdk");
module.exports.CreateTable = (event, context, callback) => {
var dynamodb = new AWS.DynamoDB();
var docClient = new AWS.DynamoDB.DocumentClient();
var params = {
TableName: process.env.TABLE_NAME,
KeySchema: [
{ AttributeName: "LastName", KeyType: "HASH" } //Partition key
1,
AttributeDefinitions: [
{ AttributeName: "LastName", AttributeType: "S" }
1,
ProvisionedThroughput: {
ReadCapacityUnits: 10,
WriteCapacityUnits: 10
}
¥
dynamodb. createTable(params, function (err, data) {
if (err) {
console.error("Unable to create table. Error JSON:", JSON.stringify(err, null, 2));
}
else {
console.log("Created table. Table description JSON:", JSON.stringify(data, null, 2));
}
IOF
};

The AWS SDK will be used in a similar way in some of our demos in the next chapter. It would be a good

idea to look over the API documentation to get a better understanding of how these services are created and
how they can be used throughout your applications.

25

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/index.html

CHAPTER 2 © GETTING STARTED

Azure SDK

Similar to the AWS SDK, Azure also has an SDK that you can use when creating your Azure functions. The list
of available SDKs for different tools and platforms includes these:

e NET

e Java

e Node.js
e PHP

e Python
e Ruby

e Mobile
e Media

e Android
e iOS

e JavaScript
e Swift
e Windows

Since we will be using a Node.js runtime to create our applications in the following demos, we will
continue to look at examples of using SDKs with JavaScript. You can get the Azure SDK by using the
command npm install azure.Just as with AWS, Node Package Manager will install the Azure development
kit for you. If you only want to install individual modules for specific services, you can do this through NPM
as well. The following code shows how to easily create a database in DocumentDB utilizing the Azure SDK:

var DocumentClient = require('documentdb').DocumentClient;
var host = 'host';

var key = 'key';

var dbClient = new DocumentClient(host, {masterKey: key});
var databaseDefinition = { id: 'myDatabase' };

//Create Database

client.createDatabase(databaseDefinition, function(err, database) {
if(err) return console.log(err);
console.log('Database Created');

};

This JavaScript utilizes the DocumentDB client to create and instantiate a new DocumentDB
database in Azure. The require statement collects the module from Azure and allows you to perform
multiple DocumentDB operations straight from your function. We will be using this in more detail in the
Azure tutorials.

26

CHAPTER 2 © GETTING STARTED

Google Cloud SDK

Google Cloud’s SDK also supports various tools and platforms:

e Java

e Python
e Node,js
e Ruby

e GO

e NET

e PHP

However, since Google Cloud Functions supports only Node.js at the moment, the Node.js SDK for
Google Cloud is what we will be using to implement serverless applications. The Cloud SDK has many
features that deserve further explanation.

The gcloud tool manages authentication, local configuration, developer workflow, and interactions
with the Cloud Platform APIs. The gsutil tool provides command-line access to manage Cloud Storage
buckets and objects. Kubect1 orchestrates the deployment and management of Kubernetes container
clusters on gcloud. Bqallows you to run queries, manipulate datasets, tables, and entities in BigQuery
through the command line. You can use these tools to access Google Compute Engine, Google Cloud
Storage, Google BigQuery, and other services from the command line.

With the gcloud tool, you can start and manage different Cloud SDK emulators built for Google Cloud
Pub/Sub and Google Cloud Datastore. This means you will have the ability to simulate these services in your
local environment for testing and validation.

You also have the ability to install language-specific client libraries through the Cloud SDK. To install
the Cloud SDK for Node.js, enter the following command into your terminal: npm install -save google-
cloud. Google Cloud also recommends you install the command-line SDK tools. To do this, you can install
the SDK specific for your machine from this site: https://cloud.google.com/sdk/docs/. The following
code demonstrates how to use the Google Cloud SDK for Node.js to upload a file to cloud storage.

var googleCloud = require('google-cloud")({
projectId: 'my-project-id',

keyFilename: '/path/keyfile.json’

1);

var googleStorage = googleCloud.storage();
var backups = googleStorage.bucket('backups');
backups.upload('file.zip', function(err, file) {

1

The JavaScript requires the google-cloud module, which enables you to utilize and alter different
Google Cloud services in your code. While this SDK isn’t as integrated as the AWS and Azure SDKs, it is
growing and can be used to create and deploy functions as well as other services.

27

https://cloud.google.com/sdk/docs/

CHAPTER 2 © GETTING STARTED

Developing Locally vs. Using the Console

How should you start developing your serverless application? Do you build it locally and then deploy it to
the cloud provider, or do you build it within the cloud provider’s console? A mixture? This section discusses
best practices and options for developing locally and within the provider’s environment.

Local Development

Developing locally is often preferable because it means you get to use the tools, IDEs, and environments you
are used to. However, the tricky part about developing locally can be knowing how to package and deploy
your functions to the cloud so that you spend less time figuring this out and more time working on your code
logic. Knowing best practices for project structure and testing can help speed up the development process
while still letting you develop using your own tools.

For AWS Lambda functions, it is important to remember that the handler function must be in the root of
the zip folder. This is where AWS looks to execute your function when it’s triggered. Structuring your project
in a way that enforces this execution rule is necessary. For testing locally, the NPM package lambda-local
allows you to create and store test events that you can execute on your function locally before taking the time
to deploy to AWS. If you aren’t using a framework that automates this deployment for you, using a package
such as lambda-1local is preferred.

Azure also offers an NPM package that can test your functions locally. Azure Functions Core Tools is
alocal version of the Azure Functions runtime that allows you to create, run, debug, and publish functions
locally.

Note The Azure NPM package currently works only on Windows.

Visual Studio offers tools for Azure functions that provide templates, the ability to run and test
functions, and a way to publish directly to Azure. These tools are fairly advanced and give you a lot of the
function right out of the box. Some limitations of these tools include limited IntelliSense, inability to remove
additional files at destination, and inability to add new items outside of the file explorer.

Google Cloud has an Alpha release of a cloud functions local emulator. The emulator currently allows
you to run, debug, and deploy your functions locally before deploying them to the cloud directly.

Deployment of Functions and Resources

There are several options for deployment from a local environment to a cloud environment. Using the
Serverless Framework is a preferred method because it builds condensed deployment packages that are
provider-specific so you can use them to build the same application in any account. It is also preferred
because it allows you to create dependent services and security simultaneously.

Another option for deploying from your local environment to the cloud is using the provider’s
command-line interfaces. AWS, Azure, and Google Cloud all offer CLIs that can be installed and utilized
to create and deploy various services. The AWS CLI can be installed if you have Python and pip using this
command:

pip install --upgrade --user awscli.
Once the CLI is installed you can configure your AWS CLI account using the command:

aws configure

28

CHAPTER 2 © GETTING STARTED

The documentation for this can be found at http://docs.aws.amazon.com/cli/latest/userguide/
installing.html

This configuration will ask you for your AWS Access Key ID, AWS Secret Access Key, Default region
name, and default output format. Once these values are configured, you can use the CLI to create and
configure your AWS services. For a complete list of services and CLI commands, go to https://docs.aws.
amazon.com/cli/latest/reference.

Azure also offers a command-line interface as well as PowerShell commands to manage and deploy
your Azure resources. To install the Azure CLI with a bash command, use:

curl -L https://aka.ms/InstallAzureCli | bash

Azure has also released a Cloud Shell, an interactive, browser-accessible shell for managing Azure
resources. Cloud Shell can be launched from the Azure portal and allows you to have a browser-accessible,
shell experience without having to manage or provision the machine yourself. This enables you to create and
manage Azure scripts for resources easily. To get started with the Cloud Shell, I recommend following the
tutorial provided by Microsoft at https://docs.microsoft.com/en-us/azure/cloud-shell/quickstart.

Google Cloud also takes advantage of a CLI within a Cloud Shell that allows you to access and deploy
local resources. This allows you to manage projects and resources without having to install the Cloud SDK
or other tools locally. To utilize the Google Cloud Shell, all you have to do is enable it from the console. To
initiate the Cloud Shell, you simply enable it in the console as you would do for Azure. Figure 2-8 shows an
example of enabling the Cloud Shell.

C @ Secure hitps:jconsche.cloud.googie.com/home/dashboardTproject =loys ve-1076234 gaw1,124412105.2141638397.1491576553 *« 00 ¢
©! Apos yy Workday captoch [Leaming Locker & Developer - Interm. ACioud Gure) Linkedin [T 2017 ttern Progra. 50 AWS Al Blog () GitHub 7 FlightSaats Develoo.. @ Alexa gl Coke-Echo - Gitlab .
§§ ouhave $300.00 in credit and 324 days left in your fres tria DISMISS m
f Home DASHBOARD ACTIVITY ! PRI
&, Cloud Launcher
AT API Manager ¢ Project info I APls & Google Cloud Platform
fosih status
Regarsts (requests./sec)
B Biling hello world
P ve-107623 Al gardices rormal
T Support
=3 Goto Cloud status dashboard
B 1AM & Admin =3 Boto project settings
= Billing
& Resources

@ App Engine 50.00
Cloud Storage Approximate chasges 35 far 1
1 bucke!

@ Compute Engine
e e ¥ Golo APls overview
@ Container Engine

() Cloud Functions

- Networking

Biglabie

i Datastore

Figure 2-8. The Google Cloud Shell is enabled by clicking the shell icon in the top right; it then runs in the shell
screen at the bottom

You can use any of these tools to develop and configure your serverless functions and associated
resources. For consistency, we will use the Serverless Framework, which is accessible to all three providers
we will be exploring.

29

http://docs.aws.amazon.com/cli/latest/userguide/installing.html
http://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/reference
https://docs.aws.amazon.com/cli/latest/reference
https://docs.microsoft.com/en-us/azure/cloud-shell/quickstart

CHAPTER 2 © GETTING STARTED

Developing and Testing in the Cloud Console

Developing functions in the cloud console tends to be a little trickier than developing locally. One good
thing about developing in the console is that you don’t have to worry about deploying the functions; all

you have to do is test and save them. Azure allows you to navigate through your project structure and make
changes in the console. AWS allows you to look at your handler file as long as your deployment package isn’t
too large to enable inline editing. Google Cloud also allows inline editing for smaller deployment packages.

Each of the cloud providers also lets you specify test cases that you can store and use to test your
functions as you make changes to them. They also provide monitoring and logging that you don’t necessarily
get locally. This provides developers with a history of insight into their functions and how they respond to
different events.

Establishing triggers can also be easier in the cloud provider environment. AWS, Azure, and Google
make it very easy to assign a trigger to a function within the console. They also provide templated test cases
that can be used to test functions right out of the box. As these providers’ serverless platforms grow in
capabilities and functionality, I can imagine developing in the console becoming much more common. For
now, the preferred method is to develop locally using your tools and IDEs and rely on advanced deployment
tools to deploy and test in the cloud. This could also be dictated by the size of your business. For instance,
larger businesses may prefer you to use in-place development environments, whereas when developing on
your own you can create within the console without any constraints.

The Tools

This section will cover the various tools that will be used to develop and deploy our serverless functions
within AWS, Azure, and Google Cloud. These tools include Visual Studio Code as our IDE, Node.js as our
runtime, and Postman for testing our API and triggering our functions.

Installing VS Code or Choosing Your IDE

Visual Studio Code is my IDE of choice for its ease of use, built-in insights, and cross-platform accessibility.
You can also install VS Code on Windows or Mac, which is a great feature. I will be working within VS Code
for the following tutorials; so although you are more than welcome to use your own IDE, following along
might be easier in the same environment. To download VS Code, go to https://code.visualstudio.com/
and download for your machine.

Node.js

Node.js is the only runtime supported by all three cloud providers, so we will also be creating our functions
using Node. Besides being the only runtime that is completely supported, Node is an event-driven, scalable
JavaScript that fits the need for building lightweight, scalable functions.

To install Node, navigate to https://nodejs.org/en/download/ and find the installer that is compatible
with your machine. It takes little time to download the installer and then follow its steps to complete the
node installation. Figure 2-9 shows the Node.js download options.

30

https://code.visualstudio.com/
https://nodejs.org/en/download/

CHAPTER 2 © GETTING STARTED

* 00

AWS Ml Blog () GitHub A FlightStats Develon.. @ Alexa Ml Coke-Echa - GitLab

| &« C' @& Secure hitps:/nodejs.ong/en/downioad
5 Apps y Workday captech B Learning Locker # Deweloper - interm_

& Cloud Guru [Linkedin [2017 intern Progra_..

LTS — P
Recommended For Most Users 171 '

Current Windows Installer Macintosh Installer Source Code
Latest Features

Windows Installer (.msi) 32-bit B4-bit

Windows Binary (.zip) 32-bit 64-bit

macO5 Installer (.pkg) 64-bit

macOS5 Binaries (.tar.gz) 64-bit

Linux Binaries (x86/x64) 32-bit 64-bit

Linux Binaries (ARM) ARMVG ARMYT ARMvE

| heoscimodeis.arglenidawniond
l @ node-v0.10.0ckp 3 Sowhl x

Figure 2-9. The nodejs download page allows you to download node for Windows or for Mac platforms. It
also allows you to choose the install method and package.

After you have installed Node.js, navigate to your terminal (for Mac) or command prompt (for
Windows) and check to confirm that the installation worked, by running the command node -v. Figure 2-10
shows the result.

[NON 3 mstigler — -bash — 80x24

Last login: Mon Sep 11 22:59:24 on ttys@ol
‘mbp-mstigler:~ mstigler$ node -v

v7.2.1

mbp-mstigler:~ mstiglers [

Figure 2-10. This terminal command confirms that I do have Node installed. The -v flag signifies version, so
the response that returns is the version of Node I have installed.

31

CHAPTER 2 © GETTING STARTED

If you have Node installed correctly, you should get a response showing a version. Make sure your
version is at least v0.10.32. If it isn’t, return to the Node installation page and grab a more recent version.

Now that we have Node installed, we can begin to use it in our serverless demos. To expand on what
Node.js is and how it works, Figure 2-11 demonstrates how it operates under the hood to support thousands
of concurrent connections.

[Flequast [Request]

[Request] [Request Fleques:] [Request] [Request]
Server creates new thread :
: Traditional Server handles event-based
from limited pool or waits Server Nodejs |- callback on single thread

for available thread

Figure 2-11. This figure from havlena. net illustrates the concurrency of Node.js established by its
single-thread approach

Its event-driven structure and ability to process on the fly make Node.js an ideal runtime for serverless
applications, chat applications, proxies, and real-time applications. Similar to serverless functions, Node is
not meant to be used for long-running, CPU-intensive operations.

Postman

Postman is another handy tool we will be using throughout the tutorials. Postman is a cross-platform GUI
that makes testing your APIs incredibly easy. To download it, go to https://www.getpostman.com/ and click
the installation package that is right for your machine. Figure 2-12 shows what the Postman application
looks like after it has been installed.

32

https://www.getpostman.com/

CHAPTER 2 © GETTING STARTED

Builder

e No Emdronment
employees

Collections

GET
Al

P IR0 ST - eyt) ot o ey s “ e
Serveriess Demo &

Authorization

Postman Echo

Figure 2-12. This figure shows the Postman application and everything you can do within it

Postman allows you to save requests so you can easily access them the next time you want to test them.
To hit an API, you specify the method, the endpoint, and any parameters, and click Send. This will call the
API and return any information it gets back to Postman.

We will be using this tool throughout the book to trigger our functions that are being executed by API
requests. Postman will feed us the results of the requests in the Response section of the application.

Environment Setup

For the rest of this book, we will be walking through several function examples using AWS, Azure, and
Google Cloud. To accomplish this, I recommend a set of tools to be used so that development environments
are the same throughout the tutorials. I will be using Visual Studio Code as an IDE, a Node.js runtime using
Node Package Manager (NPM), and the Serverless Framework to deploy our functions.

33

CHAPTER 2 © GETTING STARTED

Navigating VS Code

Visual Studio Code is a lightweight IDE that has built-in Git, Intellisense, Debugging, and Extensions.
Intellisense gives you more than just syntax highlighting and autocomplete. It also provides smart
completion based on variable types, function definitions, and imported modules. Intellisense can be
accessed while writing your functions. To look at your project structure and navigate between files, click
on the explorer tool in the top left corner of VS Code. Figure 2-13 shows a basic project structure within the
Explorer tool.

@ EXPLORES Welcor handlerjs % R O -
+ OPEN EDITORS 1 'use strict'; A
wlcomo »)

2 3 ¢ module.exports.hello = (event, context, callback) = {
el g 4 comst response = {

4 SERVERLESSEXAMPLE 5 statusCode: 200,

¥ [6 Body: JSON. strirgifyl{
S 7 message; 'Go Serverless vi.0! Your function executed successfully!’,

8 input: event,
9 .

¥

callbackinull, responsel;

#/ Use this code 1f you don’t use the http event with the LAMBOA-PROXY integration
15 ## callbackinull, { message: 'Go Serverless v1.8! Your fumction executed successfullyl’, event };

16
COLEMS OUTS EBLG EONSOLE TERMINAL 1+ basn P+ O o~ ox
sbp-mstigle iglers serverless create —tesplate aws-nodefs ~—path scrverless
Serverless: Gener .
Serveriess: Gene s/estigler/Deskicp/server lessExanple/serverless

Serverless: Successfully genersted boiler
mbp-astigler:serverlessExasple mstiglers [
OO0AD Ln1,Coll Spacess2 UTF-8 LF JowsSeript @

Figure 2-13. This figure illustrates the Explorer view, where you can navigate through your project and write
functions in the workspace

34

CHAPTER 2 * GETTING STARTED

The built-in Git makes it easy to initialize a repo and use all Git commands right from Visual Studio
Code. Figure 2-14 shows the built-in Git component.

N handlerfs % & m -
1 Cuse strict'; i
sdded handier and serves 3
CHANGES 3 medule.exports.helle = (ewent, context, callback) =» {
4 const response = {
Y 5 statusCode: 208,
1 [body: JSON.stringifyi{
7 message: 'Go Serverless vi.0! Your function executed successfully!’,
8 input: event,
9 .
1 IE

callbackinull, responsel;

14 #/ Use this code 1f you don’t use the http event with the LAMBOA-PROXY integration
15 #f callbackinull, { message: "Go Serverless vi.®! Your fusction executed successfullyl’, event });

Ln1,Coll Specem2 UTF-8 LF JawSeript @

Figure 2-14. The built-in Git component allows you to initialize a repo, commit and push changes, and track
branches. The blue bar across the bottom of VSCode tells you what branch you're in and displays any warnings
or errors for that branch

35

CHAPTER 2 © GETTING STARTED

Visual Studio Code also provides a debugging component that helps you add configurations to your
project to step through and debug your code. Figure 2-15 shows the debugging component and a newly
created configuration for it.

i) WBUG b LeunchProgs B P arvd launchjson & R M -
1
VARIABLES 1 K
2 £f Use IntelliSense to learn ible Node. §s debug attributes.
~ 3 I Hover to wiew descripti ng attributes.

4 £# For more information, visit: hitps:/fev.microseft.cos/fwlink/?lickid=038387
b 5

7 1
oy 8
® :

1 “ABBe™1 “Launch via NP,
= 1 “runt iseExecutable”: “npe”,

“windows®: {

“runtimeExecutable”: “npa.ced
}

15 “runtisearg

“rur-ser
*debug”

18 1 -

19 part™: 585

E h

1 i
n : .
+ WATCH 24 “nane™: “Launch Progros”,
25 “progras™: "${file}”

+ CALL STACK

Add Configuration...

LnZ8, Col2 Spsces4 UTF-8 LF JSON @

4 BREAKPOINTS

Figure 2-15. The debugging tool includes breakpoints, configurations, a variable section that you can track,
the call stack, and a watch log

VSCode also provides an extensions section that allows you to install and add different extensions to
your project. One extension we will be using is the npm extension for support for Node Package Manager. We
can go ahead and install this extension now by navigating to the extensions component and searching for
NPM in the marketplace. Figure 2-16 shows how to locate the NPM extension.

36

CHAPTER 2 * GETTING STARTED

N crensons = .. ks [Extension: ngm X

npm Intellisense npm -«

Visual Studio Cote plugin t egamma | Eaana | kkkkk | License
v s
npm support for VS Code
o0 = e

npm support for VS Code | Disatie v | uninstan |

[CHE o commands for vscod || Dtalls Cont
o

Mode npm

This extension supports running npm scripts defined in the package. j son file and validating the installed modules against the dependencies defined in the package. json.

Notice Tha validation is done by running Npa and it is not run when the modules are managed by yarn.

packagelinker
quickly find the GitHub wi ¢

The package. j son vakidation reports warmings for modules:

st |
=
[inatat) = that are defined in the package json, but that are not instalied
L irstall|

GuickTask = that are instaied but not deflined in the package json
IES SMSIgE S| IEnnask + that are instalied but do nat satisty the version defined in the package json.
Library Versh Quick fixes to run NPS are provided for reported wamings.

Show all version for instalie.

Previow stack analy.

An stack for python,

Package to Readme

Parses your npm packag

Task Mastor
Automatic task managemen

I TERMINAL T Basn t + @ A x
Vue.js Extension Pack mop-mstigler:Serveriess mstiglers
Cofloction of popular VS Co.
lonkc2-vacode
onic2 Ru
Pmaster © OO0AD @

Figure 2-16. The NPM extension that we would like to install to set up our environment can be found in the
marketplace. You can install it by clicking the Install option.

The extensions will give you the details, change log, and dependencies along with examples of how they
will be used. For the purpose of the following tutorials, we will go ahead and install the NPM extension that
allows you to run commands in code as well as the extensions that provide support for VS code.

Node Package Manager: What It Does and How to Use It

Node Package Manager is a package manager for JavaScript so we will be using it with our Node.js
applications to install various packages that are needed to complete our project. NPM is very collaborative,
allowing you to install, share, and distribute code. NPM includes packages such as gulp, grunt, bower,
async, lodash, and request.

NPM is installed along with Node, so we can go ahead and use our terminal/command prompt to see if
we do indeed have NPM installed. Use the command npm -version to see if you have npminstalled. Figure 2-17
shows a response from the terminal that indicates the version of npmI have installed.

37

CHAPTER 2 © GETTING STARTED

O O 7 mstigler — -bash — 80x24
Last login: Mon Sep 11 23:02:35 on ttys@@2
[mbp-mstigler:~ mstigler$ npm -v

4.2.0

mbp-mstigler:~ mstiglers [

Figure 2-17. The npm version returned 4.2.0, indicating that I do have NPM installed

Serverless Framework

As discussed in Chapter 1, the Serverless Framework is a powerful deployment and development tool. With
its new release of its integration with Google Cloud Functions, it is becoming an integral piece to cloud
functions development. To install Serverless, we will be using NPM. In your terminal/command prompt,
enter the following command:

npm install -g serverless

This will install Serverless globally on your machine. So when we create different function projects later
on, we can quickly and easily create new services and deploy them using Serverless. For more information
before then, https://serverless.com/framework/docs/ provides documentation for Serverless for each of
the cloud providers we cover.

Organizing your Development Environment

There are many ways to organize our development environment; however, since we will be developing
serverless applications with three different cloud providers, it makes the most sense to organize by provider
and then demonstrate how to develop a project that is provider-agnostic.

To start, I recommend setting up a Git repository or some sort of version control. You can get a free
account on GitHub to store your code by going to http://www.github.com. I created a repository called
Serverless and then created three projects within it (AWS, Azure, and Google). For each project, [initialized
a serverless framework project within it. Inside your AWS project folder, run the command:

serverless create --template aws-nodejs --path aws-service.

The template defines which cloud provider you are using along with the runtime. The path defines the
name of the service you are creating. I chose to name my service aws-service. After creating the service, we
need to install the project dependencies within the service. Navigate within the service and run the following

command:

npm install

38

http://dx.doi.org/10.1007/978-1-4842-3084-8_1
https://serverless.com/framework/docs/
http://www.github.com/

CHAPTER 2 © GETTING STARTED

As we have seen before, Node Package Manager will read the package. json file provided by Serverless
and will install all listed dependencies. Figure 2-18 shows the project structure the Serverless Framework
gives you out of the box.

[".\ EXPLORER handier.js = wage. nchjson @ & M
1
OPEN EDITORS 1 Cwse strict'; i
handlor.fs serveriess A <
— . module. exports.helle = (event, context, callback) = {
picagamna 4 comst response = {
Ry launch json 5 statusCode: 200,
L - semvinussean. D) W 6 O 6 body: JSON.stringify({
4 yacode 7 message: ‘Go Serverless v1.0! Your function executed successfully!’,
8 input: event,
5 .
1 IE
E u : _
2 callbackinull, responsed:
13
14 4/ Use this code 1f you don't use the hEip event with the LAMBOA-PROXY integration
15 ## callbackinull, { message: 'Go Serveriess v1.8! Your fumction executed successfullyl’, event });
Bk
OO0AD Ln1,Coll Specem2 UTF-8 LF JawSeript @

Figure 2-18. The Serverless Framework creates a package. json file, a sample handler. js file, and a
serverless.yml file when it is installed

Inside the same repository, we are also going to install Serverless in the Azure and Google projects. For
Azure, we enter the command:

serverless create --template azure-nodejs --path azure-service.
npm install

This accomplishes the same thing that we did with AWS. If you open up your Azure project in Visual
Studio Code, you should see the same project structure (handler. js, serverless.yml, package.json, and
node_modules). We will continue to do the same thing with the Google project.

serverless create --template google-nodejs --path google-service.
npm install

Figure 2-19 shows a finished project skeleton with each of the three cloud providers. We will be using
the serverless.yml file in the next three chapters to deploy our serverless functions within each provider’s
environment.

39

CHAPTER 2 © GETTING STARTED

FLORER nelex jo @ _ . - ndesje AWS X (@ [o=

+ OPIN EDITORS 1 exports.mandler = {event, context, callbackl == { "
2 Jf TO0O inplesent

3 callbackinull, JSON.stringifylevent));

4 h

4 SERVERLESS

4 Agnostic

NSOLE TRRMINAL eaen t + B A x

mop-astigler:Serveriess mstiglers

Pmaster © QOAD Lna,Col3 Spaces4 UTF-8 LF JavaSoript @

Figure 2-19. This figure demonstrates a bare-bones project structure within each of the three providers

This project structure can also be cloned from https://github.com/mgstigler/Serverless.git.

Conclusion

In this chapter we covered everything you need to know to begin building serverless functions. We have the
tools and environment set up, as well as the knowledge of how triggers, events, and functions come together
to produce scalable, event-based applications. In the next chapter, we will go through some examples of
building functions using AWS Lambda.

40

https://github.com/mgstigler/Serverless.git

CHAPTER 3

Amazon Web Services

In this chapter, we will utilize Amazon Web Services (AWS) to create several serverless applications. We will
use Lambda to create a Hello World function that is triggered by a test case that we’ll create. We will also
use API Gateway resources and methods to trigger a Lambda function with RESTful HTTP requests that will
return data from DynamoDB. Finally, we will explore a triggered storage application, where we are able to
resize images uploaded to Amazon’s S3 service using a Lambda function. By the end of this chapter, we will
have three serverless applications and experience with several AWS services.

Note DynamoDB is Amazon’s NoSQL Cloud Database Service. We will use this and S3 (Simple Storage
Service, Amazon’s blob storage) to get experience with two different storage options and their place in
serverless applications.

Explore the Ul

Before we begin writing our applications, we will go over the AWS UI and how to navigate it, various pricing
options, and the Lambda portal. After signing into the console at http://www.console.aws.amazon.com,
your home will display a list of AWS Services. Figure 3-1 gives you an idea of all of the services AWS provides.

© Maddie Stigler 2018 41
M. Stigler, Beginning Serverless Computing, https://doi.org/10.1007/978-1-4842-3084-8_3

https://doi.org/10.1007/978-1-4842-3084-8_3
http://www.console.aws.amazon.com/

CHAPTER 3 © AMAZON WEB SERVICES

@ Secure hitps://console.aws.amazon.com/consciehome fregion=us-east-1 ad OO0 ¢
i Apos y Workday coptoch B Leaming Locker & Developer - Interm.. A Cloud Gury [Linkedin () 2017 intern Progra.. 3 AWS Al Blog) Github /U FlightStats Develop.. @ Alexa ! Coke-Echo - Gitlab "

Resource Groups ~ Ls - CloudWateh
Amazon Web Services Resource Groups Loarn more
Compute Darvaloper Tools Irismot of Things A rrscnrin Grevs o eobecton of e Tl
EC2 CodaStar AWVS loT ‘share one or mor tags. Croate 8 GrouD for sach
Vit Sanars T Gt ooty Bovicp, s, e sepiy ppcamcre s Dovcss 1 10 Cines BreOcE, appkGaton, or SmvronmeR in Your
EC2 Containes Servic CodeCommit o5, AWS Groengrass secount
n = arad Marragn Docnar Cortaren 0 Fure Code # Oraste G Repoetones AN Doy B £ (e 08 pIuS Sarvioes
p Ushisal (@ Coweud h)
Linirch e Masga Vsl Private Sarvars Bt e Tew G Contact Center
Elastc Boanstalk & P4 /mazon Connact m g Reoe
P arc Arage Vet Apps tcrnata Cote apteymarts s Camact .8 erinrs cormws sk e srgegement
Larmbda CodePipniing b o i
Phen Gt wihet Thinking absoed Sarvs I e S i i ot s D ; Additional Resources
.
§ Bch XRay ks s e S
Fuom Burkch it ot Ay Swe Asatyra wnd Dt Your Aogications & Amazon GameLit Getting 5 L
B iy s Scais Semaio e A teyee Carmms Fisad our OCKENLATN OF Viiw our NG
Storag an’!‘l’-‘. Tools. loam more abont ANS.
st CloudWatch Matle Services
ot kg ke O BB saeare Fsourmen nd Apptcntens 3 Moble Hut AWS Console Mobile App 7
EFs mCIm:IFumaoﬂ l\;: test s Moritor Mobde Agpss View your rescurces on M o with our AWS
B i i nge w2 Create wns Marage lewsrons wib Terplates e © Console mobile spp, avatsbin fom Amason
80 ey o Do Byt Appatcie, Googhe Py, of TTunes.
A et s Denica Farm
& Covig O ot A, 5, e Vi Ao o0 ins Ovions e oo AINS Markawplace
ik Rscme Imeanioey seed A ‘ummx.eq Fird and buy software. launch win 1.Ckck and
OpatWorks Caflet, Vi and Exprt Apps Anaitica v
Dotabase . Aicmate Cparatons win Chal . Pinpaint
RDS Service Catalog T Rt o Mt o AWS reclvent Anncuncamaents.
Manag! Sialors Delstae Servos Croate ot Une Slasdirdind Products Exgions the next generation of AWS cloud
DynamoDE Trustod Advisor Application Services capanites. Son whats hew
. Managed 4cSOL Ostatmes s Paricrmane e Securty 3 Step Functions.
“he Mar Senices Cooraeste Dartuans Apploatons :
o B e s W Service Health
sy Wordom Savice kr Coamfinating Appicaton Compenarts
Fas, Sergle, Cont-{ective Det Wersbousing Sacurty, dentty & Compliance API Gateway & ANsonvices operating nomaly.
B, Dopiry et aringe AP
Igersty & Access Maﬂaﬁmoﬂl bt 12, 2097, 75181 Pu EDT
Natworking & Content Delivery B e e Ao e Emyie gy Blsic Tanscoser biosearts
-VP{‘ . I Edty-to-Lne Scaiatis Meda Trarmcodng Soreco Heath [asrboar:
T st Cout Rasarons B Arayre Appicasen Secusy -
a CloudFront = Centificate Manager lossaging
o oot Coront Dabety Mobwork I cvasce, Marage, i Onpley 5718 Corstcasin g Simpe Quoue Senice
o @ Discioy 3 Mrwged Messogn Chimses
Conticata Matwor. Corveacton 0 A o gt A Dy @y S Notfcation Service
Foute 53 WAF & Shioid S i, e Push et S5
[T —— Packacts gl D008 ALaschs s Miakcious e Trafic e
Compliance Reports - “'“"-‘ el it Sl
Migratan B /v Campinnce Mg Crcarrarnd
- - - Business Producthity

Figure 3-1. AWS provides several services spanning different topics and abilities, including compute, storage,
database, and application services. We can access these under the Services tab across the top. We can also pin

Javorite services by clicking the pin across the navigation bar and adding the service to it. I have my most used
services pinned for easy access.

Navigation

Outside of accessing AWS Services, we also have access to AWS resource groups from the portal. A resource
group is a collection of resources that share one or more tags. Resource groups are good for keeping project
services separated and organized. A resource group can easily be created from the Resource Groups tab
across the top. You can also create resource groups from the panel on the right.

The Services tab will allow you to search and sort services that you see on the home page. AWS also
provides Additional Resources to help you get started using AWS, and a Service Health check on the right
panel that lets you see the health of your services right on login. The bell in the top banner provides you with
alerts given by AWS. These alerts give you any open issues, any future scheduled changes, and any other
notifications.

Under your username, you can access your account, your organization, billing dashboard, organization,
and sign out. Figure 3-2 shows these options and where to access them. We will look into the billing
dashboard more in the Pricing section of this chapter. AWS Organizations enables you to apply policy-based
controls centrally across multiple accounts in the AWS Cloud. You can consolidate all your AWS accounts
into an organization, and arrange all AWS accounts into distinct organizational units.

42

CHAPTER 3 © AMAZON WEB SERVICES

Q% DO GO :
htStats Develop... @ Alexa %' Coke-Echo : GitLab ﬂﬁ} Proposal Tracker -... »

oDB b Simple * .Q. maddie stigler =~ N. Virginia ~ Support ¥

Learn more

My Organizati maddie stigler tion of resources that
Create a group for each

My EBiling Dashhiaard vironment in your

My Security Credentials

Sign Out
Tag Editor

1at enables engagement at

Additional Resources

Getting Started ("
iplaver Games Read our documentation or view our trainina to

Figure 3-2. Your username and account information can all be accessed straight from the home page on the
portal. This is where you can manage all of your account settings and billling information.

The region to the right of your username allows you to select the Amazon Region you are working in.
The Region Names are as follows:

e US East (Ohio)

e USEast (N. Virginia)

e US West (N. California)
e USWest(Oregon)

e (Canada (Central)

e Asia Pacific (Mumbai)
e Asia Pacific (Seoul)

e Asia Pacific (Singapore)
e Asia Pacific (Tokyo)

e EU (Frankfort)

e EU (Ireland)

e EU(London)

e South America (Sao Paulo)

43

CHAPTER 3 © AMAZON WEB SERVICES

The region that you select becomes your default region in the console. Some services are available in
regions that others aren’t. So if you are navigating the console and don’t see the resources you are looking
for, try selecting the region the resource was created in. US-East is the default region, so I would check
there first.

AWS also provides a Support service that offers Support Center, Forums, Documentation, Training,
and Other Resources. These are good for learning new services and getting hands-on experience with new
services. The documentation provides a Getting Started guide with examples, SDKs and Tools, resources,
and examples for AWS services. It is extremely helpful when getting started with new services.

Pricing
In Chapter 1, Table 1-1 showed Lambda pricing for AWS in comparison to Azure and Google Cloud, but
now you will see how to navigate the Billing Management Console under your account to help manage your

costs. Under your username, select Billing and Cost Management Dashboard. This will take you to a page
that looks similar to the one shown in Figure 3-3.

i @ Secure hitps://CONSOM.BWS.aMaTON.Com biling/homaTregions=us-oast-1# ada OO0
H! Apps y Workday captech B Learning Locker & Developer - Interm. A Cloud Gure 3] Linkedin [2017 mtern Progra_.) AWS Al Bilog () Gitub 7 FlightStats Develop.. 8 Alexs Ayl Coke-Echo - Gitl
Resource Groups * CloudWatch
Casrsoars Billing & Cost Management Dashboard (7]
(™
Cont Expicrer What's New in AWS Biling and Cost Management? Month-to-Date Spend by Service Bin Detalls
Buages + Manage your spend with AWS Budgets Tha chart below shows he POpOrtion of Costs spent 1or 8ach KAAVCE YOu L8
Reports « Visuaize your conts 8nd USEge wiTh Ihe Newly-COtmed Cost Explorer
Cost Aocation Tags » Essdy upload your Cost and Usage Repceis inio Recshit and QuickSight
Payrmont Methods
Payment Hadory Spend Summary Cont Explorer

Weicome 10 the AWS Account Biling console. Your iast month, monsh-to-date, and month-end

Proferences Kerecasted CoMts BO0RAT LHOW
Croats
Cumaet mongh-to-date balance for Jume 2017
Tan Semngs o
o 0.50
. B Fowms: $0.50
" [| CodeCormem $0.00
$052
B emee $0.00
8
| $0.00
= B o Sevicm s0.00
505 $0.8
T .
w04 i $0.00
Totsl so.se
w2
®
Lant Mary Woet o Dite. Forecast
ey 2017 Lune 2017} e 2017
P Imponant Informatn atout these Costs + Inciuce Subscription Charges
Top Free Ther Services by Usage View all
Servk Month-to-date Forecasted month-end
usage/F res Tier limit usageFree Tier lmat
3408 4 85%

TS r— 1

- 8837 100 Mt

Figure 3-3. Your Billing and Cost Management dashboard gives you an overview of your costs per month, per
service, and as a forecast

AWS gives you a lot of accessibility with managing costs of services, payment methods, generating
reports, and viewing your bills. All of these capabilities are available through the Billing dashboard on the left
panel. The Billing option lets you sort through your AWS bills by month. It provides a history of these bills as
well as a CSV export option. Figure 3-4 demonstrates this capability.

44

http://dx.doi.org/10.1007/978-1-4842-3084-8_1
http://dx.doi.org/10.1007/978-1-4842-3084-8_1#Tab1

CHAPTER 3 * AMAZON WEB SERVICES

C @ Secure MMIDS//CONSOM. BWS. AMAZON.COM, Ting. °Q 0= 10bityears 201 7Amonthe A 00 1

I Apow oy Workdey captech [Learning Locker & Developer - nterm. A Cloud Gury [Linkeain (I 2017 intarn Proges. AWS M Blog () Gt A FightStats Develop_. @ Alexa iy} Coke-Fcho - Gitlab

Dasrtoars Bills 2]
Bans
Cot Exgiorer & Download CSV & Print
Budgets.
Hopom $0.50 USD
Cowt Alocaton Tags
Payment Methods $0.50
Payment Mstory
Consclicated Biling + Expand A8
Proferno
Creats $0.50
Tax Sefnga
DevPay $0.00
$0.00
$0.00
$0.00
$0.00
50.00
$0.00
» Lambda 50.00
+ Polly $0.00
+ Route 53 $0.50
+ Simple Notification Service $0.00
» Simpie Storage Service $0.00
Taxes
» CT to be collected $0.00
+ GST to be collected $0.00
+ US Sales Tax to be collected $0.00
+ VAT tn hav cllictaed snna

Figure 3-4. The Bills section allows you to sort through your bills and view them based on date

Another important billing capability is Consolidated Billing, which allows you to handle multiple
accounts under one master account. It works with AWS Organizations to create multiple organizations,
organize accounts in these organizations, and apply policies to these organizations. A good use case for this
is a large company with multiple projects. Instead of using resource groups and tags, you can keep your AWS
applications and resources completely separated from one another with Organizations and Consolidated
Billing.

Another solution is to set up billing alerts within the billing console. Billing alerts will send you email
notifications when your account hits a certain dollar amount or resource amount set by you. I made the
mistake of thinking all services in the free tier were free and was hit with a pretty hefty bill after spinning up
multiple RDS instances and EC2 instances. Since then, I have set my billing alerts to notify me when I go
over $1.

Lambda

The Lambda console can be accessed from the Services tab across the top, under Computing. The Lambda
dashboard lets you view the number of functions, the total code storage, account-level metrics over the past
24 hours, and what'’s new within Lambda. Figure 3-5 gives you an overview of a Lambda dashboard.

45

CHAPTER 3 © AMAZON WEB SERVICES

: C @ Secure hilps://CONSOle WS AMATON.COM lambxia Nome Tregion = us-east- 18 as 00
I Apos gy Worksay captech B Lowrming Locksr & Developer - item_. A Cloud Gury [Linkeain (L) 2017 tern Progea. (8 AWS AlBlog () Giiub 7 Flightstats Deveioo.. ¢} Coke-Echo - Gitlab -

AWS Lambda Resources for US East (M. Virginia) What's new
.
| Dashboard Lambda functions] 18 * AWE Lambda Avatabie i Mumbal Fegaon
Code stornge s aME . M aixda Supports Node ja w8 10
e [Croae s Lantca mction | T ——
Lambda

Account-level metrics (last 24 hours) Developer resources

Tha charts Delcw Show Metncs Scross Bl your Lambaa Aunctions in tha region. Clck on the Chan bie 10 500 8 Por-function Dreakooewn, o Chck o

on the char 1o view the metrics in Watch * ANV LAsie DN

by = + AWS Tookit for Ecipee
* Joniins plugin
@ Invocation ermors < @ Theottied invocations < = AWS Serveriess Appication Model
+ AWWS Step Functions
Additional information
. FAQ
+ Rolosia e
o Devsioptr Qusds
* Forums
+ KNS Compute Blog
+ Raport an istue
Invocation count o Invocation duration =
T Jloonioe s amaon ChiPme Bretric s g aph=INSOSS 1 PO ST RE T SUNSVALN TR S 2FLambda~Sum=300~- T | O=-PO0~Errors

Figure 3-5. The Lambda dashboard gives you an overview of all of your functions

The Functions section is where you go to access and create Lambda functions. Figure 3-6 shows the
Functions UL

L) @ Secure hilps://console.aws.amazon.com)L

on=us-gast- 1f % ax DOigo i

! Apps yy Workday ceptech [Leaming Locker & Develope ACioud Guru [Linkedin 8 AWS Al Blog) GitHub 7 FlightStats Develcp.. @ Alexa M} Coke-Echo - Gitlab [Proposal Tracker -_.

Services - i u E AP Gatewny CloudWatch &: DynamcDB b Simpla k%

AWS Lambda % —]
Dasnbaand
s Functions (27 G View detat e fonceon |
= ErT @ 121D
Deseription Rurtine Code size Last Mod
service to read employees Node s 6.10 azma 4 months age
Nodes 4.3 3348 tast morth
ramidle stigher: Mode.js 5.10 2118 nst month
hello-wortd etk world functian for serverless b Modejs 6.10 299 bytes 4 moeths ago
ServertessDemo-dev-readEmployee service 1o read a single employee Nodes 6.10 azM8 4 months ago
OfficeEpisodeSelector Nodejs 43 338 & months ago
withymame Nodefs 6.10 az2M8 5 months ago
UpdateRecipes lambda to update recipes table Nodes 6,10 130 MB 4 months ago
HotelServicesill MNodes 6.10 125M8 3 months ago
imageDownioader Nodes 6,10 saM8 5 months ago

Figure 3-6. The Lambda Functions screen shows all of your functions at a high level. You can click on a
Jfunction to access the code, test events, and configurations.

46

CHAPTER 3 * AMAZON WEB SERVICES

We will explore the Lambda portal and all of its capabilities in more detail as we begin creating our
Lambda functions. However, before we can create our functions we will need to configure our IAM (Identity
and Access Management). It is important to note that setting up IAM services is not required for using
functions, but we are following best practices and it is in your best interest to go ahead and follow the next
couple of steps. We will dive into more advanced examples later that will require the use of IAM to use
different services.

Security IAM

The IAM service is an incredibly important and integrated service within AWS. IAM lets you assign users,
roles, and policies in order to help secure your Amazon resources.

IAM Console

The IAM console is found under Services and Security, Identity, and Compliance. The console gives you
a dashboard, groups, users, roles, policies, identity providers, account settings, a credential report, and
encryption keys. From the dashboard (Figure 3-7), you can access a user’s sign-in link. This is where
users who are not admin users are directed to log in. It also gives you an overview of your IAM Resources,
including the number of users, groups, customer-managed policies, roles, and identity providers.

2 C @ Secure hitps://conscle.aws.amazon.com/amhomeTrog L & DO ¢

i Apps gy Workdey captech [Leaming Locker & Developer - interm. ACkud Gury [Linkeain [[J 2017 wmtern Progra. AWS Al Blog () Github 7 FlightSaats Develop.. 8 Alexs) Coke-Echo - GitLab

ok Usrs: 2 Plcies: &

. s T _
learany provicers Custiomer Maraged Policies: 2

Accour setirgs Security Status — & ot o S COmplte. < . >
Crecential report

Delete your root sccess keys w Additional Information
1AM bost practices
[Activate MFA on your root account -
e 2 LAM documentation
Croate indrvidual LAM usors v Fadaration Payground
= Use groups to assign permissons v
a Vickoos, 1AM reseass hastory ard sodtiona
Apply an LAM password policy - rescunCes

Figure 3-7. The IAM dashboard gives you an overview of all of your IAM resources along with five security
steps you are recommended to complete

47

CHAPTER 3 © AMAZON WEB SERVICES

To begin, it is important to complete the five steps listed in the Security Status console: deleting your
root access keys, activating MFA (multi-factor authentication) on your root account, creating individual IAM
users, creating groups for permissions, and applying an IAM password policy. By following these steps, you
are ensuring that your IAM settings are properly secured so you can begin creating users and roles.

Roles, Policies, and Users

Roles, Policies, and Users are your means to set permissions to people, services, and resources. Roles are
created under the Roles tab and allow you to create roles with set policies. These roles can be assigned to
users and services. For instance, if I have a group of developers who I want to be able to edit and access
Lambda and services, but not root account information, I can create a role called Developers.

After the role is created, I can assign certain policies to it. Policies determine the amount of access a role
has to a service. Figure 3-8 demonstrates the Policy console with all of the preconfigured policies. You also
have the option to create your own.

&« C @ Secure hitps://CONSCle.awWs.aMAZON.Com im/homeT VeuS-east-10; aa DO igo i

H1 Apps y Workdey coptech B Learning Locker & Developer - Interme.. A Cloud Guru [B) Linkedin 8 AWS A1 Blog) GitHub A7 FlightStats Develop.. @ Alexa Mg} Coke-Echo - GitLab [Proposal Tracker -_.

Services ~ Resource Groups ~ ! Lambda & API Gateway % CloudWatch

Create policy Policy actions ~

Dashboard Filter: Policy type ¥ Q Search
Groups
Policy name - Type Attachments + Description
Users
» N AdministratorAccess Job function 4 Provides full
Roles
Policies » §F AmazonAP|GatewayAdministrator AWS managed 0 Provides full
Identity providers » §F AmazonAPIGatewaylnvokeFullAccess AWS managed 0 Provides full
Account settings » W AmazonAPIGatewayPushToCloudWatchLogs AWS managed 1 Allows APl G
Credential report » B AmazonAppStreamFullAccess AWS managed 0 Provides full
» W9 AmazonAppStreamReadOnlyAccess AWS managed 0 Provides reac
Encryption keys » B AmazonAppStreamServiceAccess AWS managed 0 Default policy
» §F AmazonAthenaFullAccess AWS managed 0 Provide full a
» BF AmazonCloudDirectoryFullAccess AWS managed 0 Provides full

- Y R SR S LT T —— - S W Fp—

Figure 3-8. The Policies section allows you to create and assign policies. The attachments describe the entities
(users and services).associated with a policy.

Policies describe the amount of access allowed to a particular service. For instance, the
AdminstratorAccess policy gives you full access to all resources for all services.

The Users window lets you add users to AWS. They are given their own login and whatever roles and
policies you attach to them. To access the console, users are given Access Keys and a password that are
downloaded by CSV or sent directly to them. You determine the amount of time they have with the default
password and all of the password policies regarding their user login.

48

CHAPTER 3 * AMAZON WEB SERVICES

You also have the ability to add users to groups. Groups can be used to make permissions easier. If you
have a group of users you want to all have admin access, you can add them to a group so all of the group
policies are applied across the board. For the purpose of our serverless applications, we won’t be assigning
users or groups, but it is good to keep these opportunities in mind as you build bigger applications with a
larger group of people.

Roles for Lambda

AWS requires you to assign a role to your Lambda functions. These roles can differ across Lambda functions
as they require access to different AWS services. However, just to get started with our Hello World function,
we are going to create an AWS Lambda role that can be assigned to our functions.

In the Roles tab, we will click the Create New Role option. We will name our role “lambda_basic_
execution.” Under permissions, we will attach the AWSLambdaExecute policy. If you look into this policy,
you can see the exact permissions attached to it. The policy allows full access to CloudWatch to log our
function, and provides read/write access to AWS S3. Figure 3-9 shows what the role should look like after
creating it.

< C @ Secure https://console.aws.amazon.com/iam/home?region=us-east-1#/roles
I Apps yy Workday captech M Learning Locker # Developer - Interme... ACloud Guru [Linkedin W AWS Al Blog () GitHub # FlightStats Develop.. @ Alexa ‘g Coke-Echo - Gitla

Services ~ Resource Groups ~ ¥ Lambda & API Gateway % CloudWatch

e TAM 4 * |AM Roles Documentation

» Best practices for setting up cross-account access

+ Tutorials on roles

Dashboard

Groups

Hoers Create role Delete role

Roles

Policies Q Search

Identity providers

Account settings Role name ~ Descoption
Credential report admin

aws-nodejs-dev-us-east-1-lambdaRole
Encryption keys AWSServiceRoleForLexBots
FamilyFun-dev-us-east-1-lambdaRocle
HotelAP| Allows AP| Gateway to call AWS resources on your behalf.
HotelServiceSkill-dev-us-east-1-lambdaRole
lambda_basic_execution

lambdaRole

Figure 3-9. The role has the AWSLambdaExecute policy attached to it. You can look into the policy to see the
permissions attached, and you can also attach more policies as necessary.

The Role ARN at the top of the console is the Amazon Resource Name. This is what uniquely identifies
the role we just created. When we create our first function, we will assign our Lambda to this role, giving it all
the permissions specified within the one attached policy.

49

CHAPTER 3 © AMAZON WEB SERVICES

Your First Code

Now that we have our IAM role set and a good feel for navigating the AWS console, we can begin writing our
first code. This Hello World Lambda function is going to give us experience creating a Lambda function,
assigning a role to it, creating a test event, executing it, and later viewing the logs in CloudWatch.

Hello World

We will start by creating a new function in the Lambda console. After clicking Create a Lambda Function, you
will see a list of blueprint options (Figure 3-10). These blueprints give you a Lambda skeleton that you can edit
to complete the functionality you are looking for. To start off, we are just going to select a blank function.

L c

§ Secure MDA /CONSOM.BWE MMMIGNLOOMYISmbAs Mome Tregion=us-8ast- 1 Bjcreate/sslect -Blusprint 00 &
AWS A Blog () OitHub A FlightStats Develop_. @ Alesa Ayl Coke-Echo - GitLab

1 Appa iy Workdey captech [Learning Locker & Deweloper - inteom._ A Clogd Gury [3) Linkedin [2017 intern Progra. &

Resource Groups ~

CloudWatch

Select blueprint 2}
swmnwcwwnw«mmwmm:m Croose a Dluepnnt that boest Agra Wi YO Setred SORNANO

and customize as needed, o Skp this step I you want 1o author & Lambda function and configune an event source separately. Except where
othanwise roted, biusornts are boansed under CCO

. 7 Viewing 190084 > 3

Blank Function

Configure your function from scratch,
Define the trigger and depioy your code
by stepping through our wizand

batch-get-job-python2?

Feturra the current status of an AWS
Batch Job

s3-gat-object-python

An Amazon 5 trigger that retreves
metadats for the chmect that has Deon
updated

&

kinesis-firehose-syslog-to-json
An Amazon Kinoss Firehome stream

PrOCesaOr that COnverts Input records
from AFCI164 Sysiog format 1o JSON

&

kinesis-firshose-apachelog-to-...

An Amaron Knoss Firehose stream
PrOCOssOr that COMmverts nout records.
from Apache Common Log format to

&

config-rule-change-triggered

A AWS Config rule that is triggered by
configuration changes to EC2 instances.
Checks instance types.

&

‘abexa-skill-kit-sdk-factskill

Cemorstrate & basic fact sholl bult with
the ASX NodeS SDK

cloudfront-modify-response-he...

Buueprint for modifying ClouaFront
response header implemanted in

NodeJs.

&
lex-book-trip-python
Book Getals of & vist, using Amazon
Lex to perform natural wnguage
understanding

&

Figure 3-10. AWS provides many blueprint options for various runtimes and triggers. These are good to
explore if you are new to a particular runtime or service.

Note The blueprints will change based on the language you choose. For instance, what you see for a
Node.js function will be different from what you see for a C# function.

50

CHAPTER 3 © AMAZON WEB SERVICES

After selecting a blank function, we next have to configure our function. This requires assigning it a
name, description, runtime, and a handler and role. Names do not have to be unique universally, just within
your functions. I named this hello-world and gave it a description and a runtime of Node.js 6.10. AWS also
allows you to either edit your code inline or upload a zip. Since this function is going to be simple and small,
we can edit it inline. Figure 3-11 shows what your configuration should look like.

o

@ Secure MIDS//CONSOIE. WS AMAZON.COM. 3
i Apps gy Workday captech B Learning Locker & Developer - Interm. ACloud Gura [5) Linkedin [[J 2017 intern Progra. AWS M Biog () Gitbub A FightStats Develop_ @ Alexa) Coke-Echo - GitLab

& AP Gateway RDS & CloudWatch

Select biueprint 1 .
{oitas Configure function
Configure triggers A Lambeda function conaists of (e Custom code you want 10 axocute. Loam maore about Lambda functicns.

Namae* heaslio-workd
Description helio workd function for serveriess tutonal

Runtime® Node s 6.10 -

Lambda function code

Provide the code for your function. Uise the oditor your code does not requing custom Ebraries (cther than the aws-sck). If you need custom
Hibraries, you can upload your code and lbraries as a ZIP file. Leam maone about deploying Lambda functions.

Code entry type Ecit code iniine -

(event, context, callback) {

m Lombda®);

Figure 3-11. For the purpose of this function, we are just going to have it respond “Hello from Lambda”

The exports.handler defines this as the function handler. It takes in an event (trigger), context,
and callback, which is what we will use to signify that the function is finished executing. Our callback is
currently responding “Hello from Lambda.” Next we need to configure our handler and role. We will leave
Environment Variables, Tags, and Advanced Settings blank for now, but feel free to look them over. Our
handler is index.handler, and our role is the lambda_basic_execution role that we created previously.
Once this is configured (Figure 3-12), we can move on and create our function.

51

CHAPTER 3 © AMAZON WEB SERVICES

* & Secure hitps//CONSOle.awWS.AMATON.COM, r QO ¢
! Apps Workdey captech I Learning Locker & Dwveloper - interm._ ACloud Gury [Linkeain (] 2017 mtern Progra_ i) AWS AiBlog) Gitiub ' FlightStats Develop_. @ Alexa) Coke-Echo - GitLab

You can define Environment Viariables &3 ky-value pairs that are accessible rom your unction code. These ar useful 1o store configuration
settings withcut the need 10 change function code. Leam mare. For storing sensitive information. we recommend encrypting vilues using KMS
and the conscle’s encryption helpers.

Enabia encryption helpors

Ervironment variables x

Lambda function handler and role

Handlor* index handier L]
Role® Choose an existing role - 0
Existing role* lambda_basic_smecution * 0

» Tags

+ Advanced settings

* These fields are required.

Figure 3-12. Before moving on, make sure your Lambda function handler and role look like this

Next, we will look at testing and executing our function. For now, we won'’t set up a trigger, because that

requires trigger configuration. We just want to see what an executing Lambda looks like, how we can create
one, and how we can access the logs.

Testing

To test our Lambda function in the console, we can use the Configure Test Event action. Inside the function,
if you click Actions, you will see a list of actions you can take on your Lambda:

e Configure Test Event
e Publish New Version
e (reate Alias

e Delete Function

e Export Function

We will configure a test event. In the input test event, AWS provides several event templates. Feel free to
explore these to see what different incoming events look like. We will use the Hello World event, as shown in
Figure 3-13. This event just offers a JSON of various keys and variables.

52

CHAPTER 3 * AMAZON WEB SERVICES

O [} 0
€ @ Secure MiIDE | /CONBO. SWELAMAZON.COM, e 1= 1dtunct - Perveniia & A OO i

B Appa y Workdey captech [Learning Locker & Dwveloper - interm. A Clowed Ours [Uinkectin [2017 intern Progra. AWS AlBog () Grub A FighaSists Develop_ B Alewa) Coke-fcho - QiLab

Input test event x

Uit tha st Deiow 3 87t B #vent 3 st YO IS Wil Voo Can S01 e Svent sgan Dy Chooang Configurs test
et T Actior int ote Tt charges ¥ P eved wl oty b wreed ocady

Bamoly everd template Moo Worid -

Figure 3-13. The sample test event template provided by AWS. We will save and test this event.

Since our Lambda is not configured to do anything specific with the event, we should be able to get our
Hello World response from our test event just by triggering it. The test event works the same way a trigger
would, causing the Lambda function to execute and respond to the incoming event. You are given options
to Save and to Save and Test. With the Save button, the function is not run. Save and Test saves your function
and tests it using the provided test case. This is event-driven architecture in action. Figure 3-14 shows the
Execution result, Summary, and Log Output.

53

CHAPTER 3 © AMAZON WEB SERVICES

T Secure MIIDE CONSOM.IWS.AMAIEN.COM) > % 00§

I appa o Werictey captech T Laarming Lot ® Daveloger - intrm, ACkd Oury [0 Unkean [2017 intern Progea aws Aoy () Gnru 4 FigheSuts Develop. 8 Aless) Coke-Echs - GRLab

Dashboard * (e n Actions =

Functions

@ Execution result: succeaded (ogs) omB

The anes B

Figure 3-14. A successful execution with logging

The execution result demonstrates what we specified our Lambda to do. Since we only specified a
callback with a string, that is what we are receiving. The summary shows you the duration of the execution,
billed duration, and amount of resources configured. This is important for further configuration of your
function. If your Lambda is using only so much memory, that would be a good thing to adjust in its
configuration to limit unnecessary space and charges.

We also see the output of the log. Even without explicit logging, we were given the Start of the execution
with the request ID and version being run, the End of the request, and a final report. The following
demonstrates the code we are running for our Hello World function:

exports.handler = (event, context, callback)=>{

callback(null, JSON.stringify(event));
};

Now that we have shown the function executing, let’s change it to repeat back the event coming in.
Figure 3-15 shows our updated Lambda function.

54

CHAPTER 3 © AMAZON WEB SERVICES

® i Secufe PEEDA//CONMOM. SWILAMAZON COM

3 Apes iy Workdey captech I Laarning Locker & Develoger - term. A Cloud Gura [3) Unieain [2017 intern Progra. AWS Al Biog () Gt AT FighaStats Dwvelop. B Alesa i) Coke-Echa - GitLab

Dashboard Quatiiers = m Aetions =

Functions

© Execution result: succeeded (logs) oamB
The res Do SROWE T ML et rrc by Your RuChon Enecunion Laarm mors BOCut meturming sy, o yous banctor
v Lol "\ eyl valeel\")"
Summary Log output
Cote SHA-258 NN BT 10CEUME S TAGTIY reer Tha area toicw Shows e Kggng oals in your code. Thisms COMBSpOnG 1 B Sangi Fow s T CRouhancs I0g [FouE COPgonaing 10 T

YW Tmees Larma & = th log group

Request 1D JedTata-daac- 1187 -Side SOMIATOm

Durstion 0.4 ms

Figure 3-15. Here the function uses the event coming in to output

To improve on this Hello World function, try parsing the event and responding to parts of it. Also
include inline logging that you can look at in the log output and in CloudWatch.

Tip Whether or not you're using the console, it is extremely helpful to insert many console.log statements.
These let you see what is actually happening within your code and with the data coming in and out, and their
output is sent straight to CloudWatch.

CloudWatch

Now, we will examine CloudWatch and see where our logging happens and all of the metrics we get out-of-
the-box on our function. In the log output section, navigate to the Click Here option. This will take us to the
CloudWatch portal, where our function’s logs live. Figure 3-16 shows the two executions I made earlier in
this exercise.

55

CHAPTER 3 © AMAZON WEB SERVICES

€ @ Secure hiIps/CONSOME.BWS. AMAZON.COM

i apps gy Worksey captech B Leamning Locker & Developer - Interm.

308 4 3 L DO ¢
A Cloud Oury [Linkedin [J 2017 mbern Progra.. B Mgxa Ay Cokp-Echo - Gitlab

AWS Al Blog () Gitiub A FightStats Develop.

CloudWateh Clouaihl Log Groups + Streama for fawsAambada/helc-world
Dashboards
Alarms 4 Search Log Group Create Log Stream Dedete Log Stream T]
e | Log Stresm Hame Preftx = € 4 LogSweams1-3 3
Liog Streams Last Event Time
Bang 201 7/DB DG TILATESTIOM THObaHCOB0MMI60A00860BaT 2017-08-08 0735 UTC-4
Events OB TSLATES TISb08 7T done be 6227 967 73681 884 2017-08-00 0734 UTC-4
Fuses
| Logs
Metncs

Figure 3-16. The CloudWatch Log Group for your Lambda keeps your streams for your executions. You can
also click on specific streams and investigate logs within that time frame.

These logs are helpful for analyzing and monitoring your function’s executions. In addition to
CloudWatch, there is a Monitoring tab in the Lambda function’s console that gives you a high-level overview
of your function’s executions and outputs. To look deeper into a log, click on its stream. This will give you a
full detailed log for that execution. Figure 3-17 shows the executions on my Hello World function.

56

CHAPTER 3 © AMAZON WEB SERVICES

O @ Secure hips://CONSOM. WS SMATON.COM/cloudwate R/ home Tregia s-past- 1 FlogEventViewergre s flaemibda hedlo-world: streams 201 7JOB/C BSLATE SDESATOe. O r D O

1! Apps u Workdsy captech I Leaming Locker & Dwveloper - Interm. A Cloud Gore 5] Linkedin [2017 intern Progra. AWS M Blog () Gitub A7 FlightStats Develop.. 8 Alexa ! Coke-Echo - GitLab

CloudWatch CloudWatch » Log Groups + fmwslambdaholo-workd + 2017/0M0MSLATESTISAebod oo 004 Ba008ebd00)
Dashboards
Al 4 Epandall & Fow T & o 0
Fiter evorts o s Sm A Bh Y9 1w custom .
i Thne (UTC +00:00) Message
Events 2017.08-08
T Mo akder events found af the moment, Fistry
aaed 113510 STAAT Requostid: J248007B-4asc-1 1078080 bANSC28052T2 Version: SLATEST
| Logs v 113510 END Rogusstic: 12460078-4anc-1 1e7-8ba2-botS02ei52 T2
Metrics - 113510 REPORT Requestic 32480378-4aa0- 1107 -80a2 -DafS02eE52 72 Duration: 2,08 ms Biled Duraton: 100 ma Memory Saec 128 MB Max Mamory Usac: 18 M8
RIPORT Requestld: MMMIITE-4ooc-11e7-Bbal-baf 8265272 Durction: 2.86 = Billed Durction: 100 ms Mesory Sice: 120 M8 Mox Memory Used: 18 M8
» 113520 STAAT Raquostid: JocTabla-Saac-1107-8030-b00624TC Version: SLATEST
. 11:35:30 END Requestia: Jed?afta-Lanc- 1 1e7-883e-b0IE24 20
. 113530 REPORT Aaquestia: 3ed7ebts-4aa0- 1167 -890e-bOM2 420 Duration: (.34 ms Billed Duration: 100 ms Memory Siea: 128 MEB Max Memory Used: 18 MB

No newer svents found af the moment. Ratry.

Figure 3-17. The opened stream gives you detailed UTC time and messages. You can view logs in a particular
stream as far back as a week.

Now that we have become acclimated to the Lambda console, test events, and CloudWatch, we will
build upon our Hello World function with environment variables.
The code for the Hello World function can be found at https://github.com/mgstigler/hello-world.git.

Environment Variables

To add onto our Hello World function, we are going to cover environment variables: what they are, how
they’re used, and how they’re configured in AWS.

What Are Environment Variables

Environment variables are those set globally across your serverless application. They are given a key and a
value. The value is that of the actual variable, while the key is the name used for that variable throughout the
application. The benefit of environment variables is both security and ease of use.

Rather than leaving API keys and various access information scattered throughout your code, you can
assign the actual secure variable to an environment variable to be used anonymously. In addition, if you
know you are going to be using a variable repeatedly, setting it as an environment variable allows you to
access it across your project without re-declaring it. It also allows you to make quick changes in one spot.

To see how environment variables are used, we are going to implement them in our Hello World
application.

57

https://github.com/mgstigler/hello-world.git

CHAPTER 3 © AMAZON WEB SERVICES

Using Environment Variables in Hello World

We are going to create an environment variable with the key provider and value AWS. This also demonstrates
a best practice of separating provider logic from your code to prevent vendor lock-in. While for this example
we are just using the value AWS, later it could be used to represent different services. For instance, if we knew
we wanted to access a database, we could use the key DB_Host and set the value specific to the AWS database
hostname. This makes it easily configurable if we choose to move to a different cloud provider. Figure 3-18
shows where and how we have configured our environment variables.

Learning Locker & Developer - Interme... A Cloud Gury

DynamcDB @F SimplaN %

AWS Lambda

Dashbaard callback(; ol is: * - myProvider

pronider WS Remove
Figure 3-18. You can configure your environment variables within the AWS Lambda console

Now we can access this environment variable within our code. Figure 3-19 demonstrates how we
reference environment variables and the log output for the execution of the Lambda function.

var AWS = require(‘aws-sdk’);
exports.handler = (event, context, callback) => {
var myProvider = process.env.provider;
callback(null, “The cloud provider for this demo is:
received is: “ + JSON.stringify(event));

};

« «

+ myProvider + “. The event

58

CHAPTER 3 © AMAZON WEB SERVICES

AWS Al Blog) Gitbub Y FightStats Develoo.. @ Alexa i) Coka-Echo

A Cloud Gurw [3) Linkedin [2017 iatern Progea.

AWS Lambda Lambda » Functions > helio-workd ARM - arncarws damiboa us-aast- 11742080298 funcion helio-workd
.
Dashboard cuurers + [IET) Acton -
Functions —
Code Configuration Triggers Tags Maonftoring ©

myProvider - . The even od i5: * SO0M. stringl fy(event));

& Execution result: succeeded flogs) omB
The arca beiow shows the result returmed by your nction execution. Leam more sbout returming results from your function.
vider for this dess (st S, The event received 18t {\"hay I\ 1\ valutI\",\"ey\" A"valua?h", \"heydhe S\ voluat\")
Summary Log output
™ P ——r T . 108 Binghe ow watin the CloudWetch & ———
Code BHASS Pl OchyVFIBSBNCROUZMGTAAGOSAY "8 ar0a bk shaws the logging calls in your code. Thase comespond 10 8 singls Fow w CloudWiatch log group commsponding 10 tha
a0 Lambda funciion. Clhok hare 10 view the CloudWatch log group
ZAPTM1icn
Request 1D todTalle-4ase- 1107 -aced- T904 300D
Duration 038 s Filled Durotion: 100 = Memory Size

Billed duration 100 ms

Resources 178 MB
configured

Figure 3-19. The environment variables are accessed through process.env.variable-key

This shows how easy it is to create and access variables in your code. Now that we have completed a
Hello World demonstration of Lambda, we will look at creating a new application that uses an HTTP event
and responds to it by returning data from DynamoDB.

HTTP Event

For our first fleshed-out serverless application with Lambda, we are going to use AWS API Gateway to trigger
a Lambda function that returns data from a DynamoDB NoSQL Database. API Gateway allows you to create
HTTP resources and methods and set them to specific endpoints.

This application will mimic a virtual recipe book. We will create an API Gateway with one resource,
Recipes, and one method for that resource, GET. For the endpoint to this GET request, we will set a Lambda
function we create, called GetRecipes. This function will access a DynamoDB table that we will have
prepopulated with recipes and return a JSON value of these recipes as the response. Before setting up our
API Gateway, we will go ahead and create our Lambda function, leaving the trigger and code blank for now.
Once you have done this, you can move on to exploring API Gateway.

59

CHAPTER 3 © AMAZON WEB SERVICES

Exploring API Gateway

API Gateway is an AWS service that lets you easily create and access an API all through the API Gateway
console. It gives you a public RESTful API interface to a wide host of AWS services. This allows you to
interact easily with your databases, messaging services, and Lambda functions through a secure gateway.
In addition, it is incredibly easy to set up and create endpoints for. This allows the continuation of rapid
development. To begin using API Gateway, navigate to the API Gateway service under Application
Services. The API Gateway console shows your APIs, usage plans, API Keys, Custom Domain Names, Client
Certificates, and Settings. Figure 3-20 shows an example of the API Gateway Console.

< @ Secure hilps://console.aws.amazon.com)apigatewayt 1-18 2 Q00O
H! Appa y Workdsy captech B Learning Locker & Dwveloper - Interm A Cloud Gurw [Linkediin [2017 intern Progra.. AWS MiBlog () Givub A FlightStats Develop_ B Alexa Iy} Cokn-Echo - GitLab

B amason A1 Gatewsy APB Srowahis @
e =
.
Gerv-SarveriessDomo dev-ServeriessDemo Flightinto myAP|
Flightindo Mo descripton API fov serverioss FEght info with SMS messaging Mo escripson

AR
Usage Plans

AP Keys

Custorn Domain Names
Chert Certficates

Softings

Figure 3-20. With the API Gateway you can easily access and create APIs and set keys and usage plans for them

To create an API, simply click Create API. This will take you through the process of setting up your own
API. We will create a New API and name it Recipe API. After creating your API, you should be directed to
a console that allows you to configure your API (Figure 3-21). We want to add a resource to our API called
“recipes.

60

CHAPTER 3 © AMAZON WEB SERVICES

£ O & Secure Wtpei Aol s SR SO ackantewiy . st-18/acis " ot /nOxBeisind/croste 14 00
1 Apps y Workday captech M Learning Locker & Developer - interm. ACioud Gurd [3 Unkeatn [T 2017 tatemn Progrs. AWS MBiog () G A FightStats Develoo.. B Aesa iy Cole-ficho - Gitlab
CloudWatch
* Amazon AP Gatewsy APl > Flecipe AP Dgmgdhcog) > Rescuces = [jridepdnd) > Creste Sraow ol ity 0
AP [r— actions= @ New Child Resource
dev-SorveressDomo 7 Use 178 piage 1 Create & rew Chs rescurcs for your rescurce.
Flightirdc ‘Configurs as oy resource L]
APy Rosource Nams* Recoen
Flacipn APY Resource Path® recpes
| Mescurces Vo Can 500 DAt [arFRTeters LAng Dracuets. FOr XBTON, 17 FOURTE DISh (UBITaIME) recrenents & DAt [araete Caled
S userniame’. Configuring /Dy +) 88 8 Draxy FRSOUOe CHICheS B EGUSets 10 £ Sub-resoutes. FOr axampie, I werks for 3 GET
Mroraens PequUest 15 100 To Rardie MquUests 10 /. 800 & Few ANY method on e / rescurce.

P ——
Moy Ensbis API Gatewsy CORS .0
Dotumentsnon

Bhrary Sepport
Usage Plans
= - |
AP1 Keys
Custom Domain Names
Chhent Contificates

Settings

Figure 3-21. The new child resource can be added to your API resource and will be used in the request URL

Resources allow you to have multiple objects for your methods. We also want a single GET method attached
to our resource. Figure 3-22 shows what your API console should look like after configuring your endpoint.

€ C @& Secure CONSOM. WS AMATON.COM trwdry] CRE .y giresources niqy ho Qo QO ¢
T Apos gy Workdey captech [Learning Locker & Developes - intarm. A Cloud Gura [Unkeain (I 2017 tmtern Progra) AWS AiBlog) Gitbiub A7 FlightStats Develop_ @ Alexs ! Coke-Echo - GiLab
B Services - Resource Groups -
=: Araron AP Gatewsy APl > Facios AP Domigd®cog) > Fescurces > /fecipes igwsd > GET Show all hints Q
. &
APt , Pesouces Actions: @ frecipes - GET - Setup

Serv-Serveresslemo

Croose ihe integranion point for your rew method.

Flghtirds - fee
o

APt Integration type » Lambda Function O
HTTR

Recips AP L
Mock ©

| Rescurces

Ssges. AWS Service O

Birary Suppoet Lamida Function Getflecpes o
Usage Pans ("]
API Keys
Custom Domain Names.
Clant Cortficates

Settings

Figure 3-22. The GET method is attached to the recipes resource in our Recipes API

61

CHAPTER 3 © AMAZON WEB SERVICES

We then need to configure an integration for our GET method. You can have Lambda create an API
Gateway endpoint for you, but doing it this way gives you control over what the endpoint looks like and its
configuration. For this, we want to select the Lambda function, specify the region, and select our GetRecipes
Lambda function. This tells the API gateway when the GET method is accessed, to execute the Lambda
function. Figure 3-23 shows the complete integration of the Lambda function.

€ @ Secure hiIps://CONSOM. WS AMATON.COM 2003 leway e 1-18/ag d pin Jrees/migvi/m 5, T A Q09 i

B! Apps y Workdsy captech [Learning Locker & Developes - Inteem. A Cloud Gury [Linkedin [IJ 2017 smtern Progra. AWS Al Biog () Gisiub A FiightStats Develop.. B Alexs ! Coke-Echo - GitLab

42 Amarcn AP Gatewsy AP > RecoeAPiDamkadncog) > Resouces > frecomsintqwd > GET

APl , Peouces | McBossr & fracines - GET - Method Execution
St Sareriessnme
- Method Roquest L Integration Roquest L]
Fightinto - irecioes =
oy * Attt NONE Type: LAMBOA
- -
AR ; ARN: wr gws axscute-ap us-sast Region: us-emst. 1
Recige AP 1 PO Domiadhoog ™ GE T recpes
Fascurces
Stages E
sty Floageres § e
&
adets o]
Documentaton Method Responss . Integration Rasponse ® ?
Brary Supoon &
HTTP Status: 200 HTTP status patterns - §
Usage Plans g
Models: ap0ACatonaon = Emply You
AP Koy Outout passthecugh

Custom Domain Names.
Clent Cortficates

Settings

Figure 3-23. API Gateway allows you to view each method execution within your API

Before going back to the Lambda console to set this API as our trigger, we need to deploy our API to
a stage. Staging is important for version control and deployment. Since we are still in development, we
are going to name our stage “Beta.” Under Actions, next to Resources, click Deploy. The pop-up shown in
Figure 3-24 will ask you to create a stage if you haven’t already. Go ahead and create a new stage and name it
“beta.” Stages represent a unique identifier for a version of a deployed REST API that is callable by different
users and services.

62

CHAPTER 3 © AMAZON WEB SERVICES

€« C @ Securs htps//CONSOM. IS SMETON.COM aigatovwayThome Tregion «us-ast- 18 apisDamkadncogiresources Mgvuilmethods/GET a® OO0

B! Apps i Workdey coptech [Learning Locker & Developer - Interm_ ACloud Gure [Unieatin [2017 ivtern Progra. €0 AWS M Blog () Givub 7 FlightSiats Deveiop. 8 Alexs iy Coke-Echo - Gitlab

Deploy APl @

Choose & stage whees your AP wil be depioyed. For ssample, & test version of your
AP could be deployed 1o 8 stage named beta.

Figure 3-24. We specify our Stage name when we deploy an API. If we wanted to make changes and see them,
we would want to redeploy our API to this stage.

After deploying, you will be directed to the Stages tab (Figure 3-25). This is where you configure settings
for your stage, stage variables, SDK Generation, Swagger exports, Postman extensions, deployment history,
and documentation history. Take a look at each of these tabs to see everything that is available to you
through API Gateway.

Note Swagger is an APl framework that allows you to easily view and interact with your endpoints. I like it
because it makes it easy to test your services and is also simple to add to your project.

63

CHAPTER 3 © AMAZON WEB SERVICES

£ @ Secure hIDS //CONSOM.SWS SMATON.COM A0iga oway - & t ot L Q0 i

B Appe oy Workday captech B Learning Locker & Dwweloper - nterm_ A Cloud Gury [Unieain [T 2017 imtern Progrs.. AWS A Biog () Gt A FightSuats Develop. B Alexs) Cotw-Echo - GitLab

02 Amacon AP Gatewsy APIs > Recipe AP Domiadhoog) > Stages > bela Show o hirts Q
AP , Suges IE) beta Stage Editor Osiete Stage
Sev-SorverieasDomo b & bete
Flghtirde W voke URL: Hopn / Dgrragaicog snnc.te-40s La-aaat. | Smarorndws (ormets
ARy
Racipe APY Settings Stage Varlables SOK Expest Maatory
Paatus Configure tha metering and caching setings ko the bets stage
s Cache Sett
Bl che Settings
Cateway Feagorass Enabile AP
Modess
Documantanon CloudWatch Settings

Benary Support °

Usage Plans Enable Detafied CloudWatch Metrics O
API Keys Default Mathod Throttling
Custorn Domein Nemes Crexme M defaut romties kever or the methoc ¢ i atage Fach mestinl o e stage wil reagect e rate arcd it sefleg Vour currerd Sceoun! level Profting
rate is 10000 requests par S6cOnd Wi 8 Durst of 5000 requeets. O
Chert Cortificates.
Enable twotling # O
Rate 10000 FequUests per second
Burst 500 roquests

Cliont Certificate

Select P clart cortficats st AP Gatewsry wil use 10 Call your ntegraton endponts m hs stage.

Cortficate Norw §

Figure 3-25. We will use the Invoke URL to test the functionality of our API Gateway as a trigger for Lambda

At this point, we have an API Gateway with one resource and one method, deployed to a Beta stage, and
integrated with our Lambda function. We are ready to set this API as our trigger for our Lambda function and
begin responding to requests.

Note You might be wondering why we are only giving our APl one method. Earlier in this book, we
discussed the importance of each function having a single task and triggering event. We can add multiple
methods to this API, but we would also want to create multiple Lambda functions to respond to the different
requests (for example, a Lambda to handle POST requests, a Lambda to handle DELETE requests...).

64

CHAPTER 3 © AMAZON WEB SERVICES

Using API Gateway as a Trigger

Back in the Lambda function, GetRecipes, we can now configure the API we just created as our trigger.
Under Triggers in our function, click Add Trigger. Here, we select API Gateway from the drop-down menu
and specify the API we just created. This will tell our Lambda function to wake up to events coming in from
this specific service. Figure 3-26 demonstrates the correct configuration for our function.

& C @ Secure MIps://CONSON.BWE AMAZONCOMambda home Tregion=us-east- 18 functions/GetRecipes sod TriggerModal=openkiabetriggers ad 00 ¢
i Apps Workday captech B Leaming Locker & Developer - interm._ A Cioud Gura [3) Uiniedin (] 2017 intern Progra. § AWS Al Blog () Gittub A7 FlightStats Deveiop. @ Alexa Ayl Coke-Echo - GitLab

from. Chch on the bon Deicw (0 sewct your trgger type.

AP!M* L] ‘L—nhdn

W'l ot up an APT Gatewsy srcipoint with & proxy inbogration tyoe (learn mons sbot the nput and Larntas will 559 the necesssry fox Amazon
oot format for your functionl. Ary method [GET. POST. ot) wil ingoe your Lamibda function. To set Loarm morg Sbout the Lamteds Dermsssons modkl
up e advanced method Mappings or subpath rmoubes, vist Amason APY Gatewsy conmole

APinams Facipe AP - 0

Deployment stage beta -~ 0

Securfty AWS LAM -0

Figure 3-26. Our Recipe API is configured to trigger our GetRecipes Lambda function

Leaving the Lambda code as is, we can go into API Gateway and test our trigger. By clicking on the GET
resource, we can select Test and test our API (Figure 3-27). Since it is a GET method, it requires no request
body. On the right in API Gateway, you should see a response, status, and latency. You could also view this in
the browser by just hitting the GET endpoint. The URI for this example is

https://lambda.us-east-1.amazonaws.com/2015-03-31/functions/arn:aws:lambda:us-east-
1:174208833299: function:GetRecipes/incovations

65

https://lambda.us-east-1.amazonaws.com/2015-03-31/functions/arn:aws:lambda:us-east-1:174208833299:function:GetRecipes/incovations
https://lambda.us-east-1.amazonaws.com/2015-03-31/functions/arn:aws:lambda:us-east-1:174208833299:function:GetRecipes/incovations

CHAPTER 3 © AMAZON WEB SERVICES

- C & Secure hilps:/ \COMBOM. WS BMAION.COM apigatewayhome tregion «us -east- 18 /apis/Oomkadnc ogiresources miqvul methods/GE T as« 00
i Appa iy Workdey captech [Loarming Locker & Developer - Interm._ A Cloud Gury [} Linkediin m?ﬂ"mﬁwa-- i AWS Al Biog () Gttt A FightStats Develeo.. @ Alexs) Coke-fcho - GiLab -

ﬂ:mmm APl > Pecios AP Domkadncogl > Pescutes > fecipes gl > OET samnwe

AP . Pesowces | Aclona- g 4 usodExecuiion frecipes - GET - Method Test
Oorv-SarveressDemo

Mg & boat Cal 10 your Method with the provided ingut

Flighawdo = irecipes .
o, Path Reguest: /recipes
A N path parametens east K s FsOUCe. You Can defre path Satus: 200
e AP par by wmng e wyrtan ey # rencurce Latency: 252 ms
pah.
| Pscurces Response Body
Srage Query Strings
5 "Hells from Lasbda™
Aurorgeny
- Mo query siing parsmeters et for e method You can aod
Oatwwuy Rasporsss e via Method Reguest Response Headers
Mcudeiy
Oocurmentaton {"X-Amrn-Trace=-10" : "sonp Loded; root=1-300316308-9157 Labaotasc TS L 000653~ , = C
Headers sntemt-Type™: “spplication/json")
Brury Supoon
o No haader Darameters auat oy T method. You can &0d them
St teant
v Mathod Reguest Logs
Usage Plans
Cnecution log for request test-reguest
AP1 Keys Stage Variables Tue Jun 13 B4:01:52 UTC 2007 @ Starting execwtion for regutsl: test-invoke
Custom Domain Names. No [“gtage vanabies st for s method. 13 84:01:52 UTC IM1T © WITP Method: GET, Resource Path: frecipes
3 17 : Method request path: {}
Clant Cortficates 1 Method request guery strisg: ()
Request Body 1 Method request Bessers: (}
% 1 Method request body before trandformations:
Setirge Puaguest Body i ot supparied for GET methods
Tue Jun 13 84:01:52 UTC 2017 @ Endpoint request URI: htpa://lasbds.us-eas
t=1. anazonaes . Con/TH15-0)-D17 funct ions/urn: aws | Lanbdatur-east=1: 1742088302
m 91 funct lon: Getec ipes/ Lavecat lons
Tue Jen 13 S4:01152 UTC 2017 @ Endpolnt requedt headers! (-aarn-Lasbda-in
tegrat »y > » Autharizat
Mfots, X- TeALITARIND

2, 2-aAIA-S0LGAT by - 401 - LO-PORNGINCSY, X-ARI-SoufCe-ArRed]
pliut-east-11 1742080310299 boshadhcoa/mu| LACET/recioes, Accests=acelicat ioa/

Figure 3-27. This is where you can test your API methods and responses. If we had set it as a POST method,
we could put a JSON request in the request body.

Now that our trigger is configured, we can develop our Lambda function to respond to this request
by returning recipes from a DynamoDB table. To do this, we will first create a DynamoDB table, Recipes,
and prepopulate it with some recipes. Use the Services tab to navigate to the DynamoDB service. Here we
will click Create Table (Figure 3-28) and name our Table “Recipes” and assign it a Primary Key of “Id” of
type “Number” The primary keys should be unique to items. The DynamoDB table consists of items and
attributes. In our table, each item is a recipe which has attributes of meal, description, and prep-time.

66

CHAPTER 3 * AMAZON WEB SERVICES

b oM Tregiensus - tasl- 1 FLabies: selected = Recipns a+« Q0
i AWS AlBlog () Github A FEghtStats Develop @ Alexa) Coke-Echo - Gitlab

€« @ Secure hiIDa//CONSON.EWS. IMTATCH.COM ty T
£ Apps iy Workday captech B Learning Locksr & Developer - interm.. A Cloud Gura [} Linkedin [2017 intern Progra.

T T e ciadl i —
Cverview Iema Matrics Mgy Capacity Incexes. Triggers Access controd Tags
| ratien O Filter by table name x
Pleserved cagcity r 7 UL actions v o O
Ermpicyoes Scar: [Tatle] Recipes: Id A Wigwieeg 0 ta 0 Hems
@ Fecpes

An of Eacn of & name, & data fype, and a value. Wen you read o writs an Bem, ihe oy sttrbutes

1t arw required Br0 1noee That makn up the primary key, More info

W Feschack Q) English

Figure 3-28. An empty DynamoDB table with a Primary Key of Id

From here, we will create a couple of recipe items to populate our table. To do this, click Create Item
and append fields Meal, Description, and PrepTime with various values (Figure 3-29).

“ © @ Securn hitps://CONEOk.awS mazon.com) dynamodt/homa Pregione.ss-east- 1 tables: selected Recirs ax 0O i
£ Apps yy Workday captech I Learning Locker & Developer - interm. ACiud Gure [0 Unkeasn [2017 itern Progra. 1) AWS AlBiog () Gitbct A7 FlightStats Develop.. 8 Alexs) Coke-ficho - Gitlab

Figure 3-29. This figure demonstrates how to append fields to an item

67

CHAPTER 3 © AMAZON WEB SERVICES

When our table has been populated with a couple of recipes, we can build our Lambda function to
return these recipes in the response to the API (Figure 3-30).

€ @ Secure hilps://CONSOle.aWS.aMAZON.COM)dy t east- 1 #table ted=Feck aa OO0 i

i Apps g Workdey captech [Leaming Locker % Developer - interm. A Cloud Gura [3] Linketin [2017 intern Progra. AWS M Blog () Gitkub A FightStats Develop_. @ Alexa iy} Coke-Echo - GitLab

Overview Mems Metrics Alams Capacity Indexss Triggers Access control Tags

.
B0 R [scan ¢ (1) sucpes 1 g ~

© Add finer

Start search

4 Roguires. Spa .. Spaghesi and
Poguires: 7 9 Gl Crooss
Fogures: Ma Mac & Chosss 20

Pequres: 2. PBAJ Sandw s

Figure 3-30. A populated DynamoDB table

To create the Lambda portion of our serverless application, we will be using TypeScript, Node, and
NPM. The next section will go over how to accomplish this.

Response to Trigger

For our Lambda function, we will be developing within Visual Studio Code, using TypeScript, Node, NPM,
and the AWS SDK. First, it is important to format our project structure so we can easily zip and deploy our
function. Figure 3-31 shows the structure I have chosen to create this Lambda function. Within our AWS
project, I created an HTTPTrigger project with a Shared folder and a GetRecipes folder. The GetRecipes
folder will hold our handler. js file, which will be triggered by the GET request. The Shared folder contains a
Recipes model that defines the structure of the incoming request.

68

CHAPTER 3 © AMAZON WEB SERVICES

Prastr C O0DAOQ
Figure 3-31. The proposed project structure for the HTTP event

For now, we will create the function without using the Serverless Framework, so outside of the HTTPTrigger
project, we will need a package. json file to specify what NPM installs, and the tsconfig.json file to configure
our TypeScript builds. Your package. json file should include aws-sdk and typescript as dependencies.

Listing 3-1. A complete package. json file for this application

{

"name": "aws-nodejs",
"version": "1.0.0",
"description”: "AWS Lambda sample for the Serverless framework",
"main": "handler.js",
"keywords": [

"aws",

"serverless"”

1,

"dependencies": {

"aws-sdk": ""2.34.0"

b

"devDependencies": {
"@types/aws-lambda": "0.0.9",
"@types/aws-sdk": "0.0.42",
"@types/node": "77.0.12",
"aws-sdk-typescript": "0.0.3",
"typescript": "2.1.6",
"typings": ""1.3.3"

69

CHAPTER 3 © AMAZON WEB SERVICES

The tsconfig. json should be configured to build on save and to compile on save. This will compile the
JavaScript files for TypeScript files as you save. Listing 3-2 shows the tsconfig. json file.

Listing 3-2. The TypeScript file excludes the node_modules, vscode, git, and serverless files in its build.

{
"compilerOptions": {
"module": "commonjs",
"target": "es2015",
"noImplicitAny": false,
"sourceMap": true,
"emitDecoratorMetadata": true,
"experimentalDecorators": true,
"declaration": false,
"listFiles": false,
"moduleResolution”: "node",
"rootDirs": [
n o
]
by

"exclude": [

".vscode",
".serverless",

".git",

"node_modules"

1,

"compileOnSave": true,
"buildOnSave": true,
"atom": {
"rewriteTsconfig": false

}

We can now do an NPM install on our project to install all of the node modules we will need to create
our Lambda function. This will create a node_modules folder in your project with all of its dependencies. We
will also create a recipeModel. ts file (Listing 3-3) in the Shared folder. This model will define the structure
of the recipes we created in our DynamoDB table. We can then use this in our handler. js file to format our
response to the GET request. In the future, with other requests, you can use this model to format the request.

Listing 3-3. The recipeModel. ts file is used to format requests and responses so they match the structure
of our DynamoDB table.

export interface RecipeModel {
Id:number,

Description:string,
Meal:string,

PrepTime:number

70

CHAPTER 3 © AMAZON WEB SERVICES

In our handler. ts file, we will create our GetRecipes module that will take in an event, context, and
callback (as we have done in our Hello World example) and will utilize aws - sdk to communicate with our
DynamoDB Table and respond back to our request with a list of recipes. Listing 3-4 demonstrates this
handler function, followed by the steps that will let us go into further detail.

Listing 3-4. The handler.ts function takes in the HTTP event and responds to it by reaching into
DynamoDB and grabbing the full list of recipes.

'use strict';
exports. esModule = true;
var AWS = require("aws-sdk");
module.exports.GetRecipes = function (event, context, callback) {
console.info("Received event: ", JSON.stringify(event, null, 2));
var docClient = new AWS.DynamoDB.DocumentClient();
var table = process.env.TABLE NAME;
var response = {
statusCode: 200,
message: []
)
var params = {
TableName: table,
ProjectionExpression: "#id, #m, #d, #pt",
ExpressionAttributeNames: {
"#id": "Id",
"#m": "Meal",
"#d": "Description”,
"#pt": "PrepTime"
}
s
console.log("Scanning Recipes.");
docClient.scan(params, onScan);
function onScan(err, data) {
if (err) {
response.statusCode = 500;
console.error("Unable to scan the table. Error JSON:", JSON.stringify(err, null, 2));
callback(null, response);

}
else if (data == null) {
response.statusCode = 404;
callback(null, response);
}
else {
console.log("Scan succeeded.");
data.Items.forEach(function (recipe) {
response.message.push(recipe);
1
callback(null, response);
}
}
b

71

CHAPTER 3 © AMAZON WEB SERVICES

1. Import the AWS SDK and RecipeModel.

2. Create a DynamoDB client to communicate with the table.

3. Utilize environment variable for the table name (We will set this variable in
AWS).

attributes).

6.

Set the response of the message.

Create the table connection with parameters (table name, expressions,

Format response to scan.

We can now compile our TypeScript files into JavaScript files. Once we have created the handler, model,
node modules, and compiled our TypeScript, we can compress and upload our application. It is important
to remember that the handler. js file must remain at the root of your compressed files. The compression
must occur at the level shown in Figure 3-32.

Favorites

@) AirDrop

o Downlo...
Desktop

Devices
©) Remote...
Tags
® Red
Orange
Yellow
@ Green
@ Blue
@ Purple
Gray

E Al MyFi..
& iCloud D...
Applicat...
@ Docume...

handler.js

GetRecipes

Shared node_modules
copy

Figure 3-32. The handler. js function remains at the root level. We have included only the Shared and
node_modules folders, because that is all that is necessary in this compression.

After uploading the zip file to our GetRecipes Lambda, there are still a couple of configurations to take
care of. First, we need to update our handler. Our handler should now be listed as handler.GetRecipes.
This is because the module we are exporting is called GetRecipes and it is found in the handler. js file.

We should also add our environment variable TABLE_NAME with its proper value. We also need to add a
policy that gives us access to DynamoDB to our Lambda role. This can be done in AWS IAM under Roles.
Finally, we can test our Lambda function using Postman and the URL given to us in the API Staging console.
Figure 3-33 demonstrates a Postman request and the response we get back.

72

CHAPTER 3 © AMAZON WEB SERVICES

[rumcer mpon [Builder

hitpeiOgmks %
Cellections
GET » ittgrOgmkadheog enecube-a0l us-east- 1 amaronaws com/telalrecipes

o -
Aushorization

Figure 3-33. We use the URL provided in API Gateway to make a GET request. Our response is a JSON
response with all of our recipes listed.

We now have a start-to-finish serverless application using API Gateway, Lambda, and DynamoDB.

IMPROVING OUR SERVERLESS FUNCTION

Separate AWS logic from handler:

1. Use Environment variables for AWS specific logic or move AWS logic to shared
folder

2. Create Services folder that is specific to AWS and serves DynamoDB data
Utilize the Serverless Framework:

1. Follow instructions for AWS setup on Serverless Framework.

2. Develop and deploy function using Serverless instead of manually.

The code for both of these improvements to the project can be found here: https://github.com/
mgstigler/Serverless/tree/master/AWS/aws-service/HTTPTrigger

In the next section, we will use the skills and tools we learned with the HTTP Trigger to create a separate
Lambda function triggered by a storage event.

73

https://github.com/mgstigler/Serverless/tree/master/AWS/aws-service/HTTPTrigger
https://github.com/mgstigler/Serverless/tree/master/AWS/aws-service/HTTPTrigger

CHAPTER 3 © AMAZON WEB SERVICES

Storage Event

In this section we will use a storage event to trigger a Lambda function that responds to the PUT request.
The purpose of this application will build from our previous recipe example. Now, we would like to provide
pictures of our recipes along with a description, meal, and prep time. To do this, we will use S3 (Simple
Storage Service) as our trigger, and a Lambda function that appends a recently uploaded image’s URL to the
recipe it is associated with.

Amazon S3

AWS offers many storage options ranging from Relational Databases, to NoSQL Databases, to Blob storage.
In this exercise, we are going to explore using AWS S3, blob storage, as a trigger for a Lambda function.
Within the S3 service, let’s create a bucket. Your current S3 console will look something like Figure 3-34.

L: @ Secure hitps:|/cONSOle. sws AMaTon.com;s3, wTre =10 a%« @O
1 Apps Workdey captech I Learning Locker & Dwvelopes - Interm._ A Cloud Guny [Uniosain [T 2017 intern Progra_) AWS AiBlog) Github AU FightStats Develop_ @ Alexa gl Coke-Echo - GitLab

§ Services ~ Resource Groups ~ Lambds i} APl Gatewsy RDS

Want to manage your data based on what it is instesd of whers It's stored? Try

a s
[& oo | 5 1 o

Bucket name PRegion Duate created

W logs twasalena.com US Esat {N. Virginia) Apr 7, 2017 101740 AM

v Wi US East (N. Virginia) Apr 20, 2007 S84 41 PM

W rwssalexn com LS East (N. Vieginia) Apr T, 2017 101757 AM

W www twssalona com US East [N Virginia) Apr T, 2017 10:18:08 AM

B shcamages US East (N. Virginia) Apr 14, 2017 85445 AM

Figure 3-34. The S3 console lets you view all of your currently active buckets, create new buckets, and search
for buckets

As shown in Figure 3-35, I'm naming mine recipe-images-ms. Bucket names are universally unique
so you will have to make sure your bucket name has not been used before. By “universally,” I mean across
all AWS regions and accounts. Within the S3 settings while configuring your bucket, you are presented with
options such as Versioning, Logging, and Tags. We will leave the default values for now. The only thing we
will change is the public permissions. We will make the objects in this bucket open to the public so we can
access these recipe images from the web.

74

CHAPTER 3 * AMAZON WEB SERVICES

L3 © @ Secure hiips/console.aws.amazon.com/s 3 home Tregion=us-east- 18 aw OO i
1 Apps iy Workday captech B Learning Locker & Oeveloper - term.. A Cloud Oury [Unkedin (] 2017 intern Progra_. 6 AWS Al Blog () GtHsb A FlighiStats Deveiop. B Alesa) Coke-Echo - GitLab

Create bucket

2 Set properties 1) Set permissions

Copy settings from an existing bucket

Figure 3-35. The Create Bucket option lets you configure your blob storage bucket on the fly. You can also
adjust these settings after creating the bucket.

After our bucket and its respective images are configured, we can move on to setting S3 as our trigger
and creating our Lambda function.

Using S3 as a Trigger

From the Lambda console, create a Lambda function called UpdateRecipe. This Lambda function will
receive events from S3 as an object is uploaded (PUT). It will then update the corresponding object’s recipe
with an image URL. For simplicity, we will name our image uploads with the key to their corresponding
recipe. For example, the recipe for Mac & Cheese has an Id of 2. To associate an image URL with that recipe,
we will upload a file named 2.

Within the Lambda console, configure your trigger to be S3, and select the bucket that you created
previously. Your trigger will end up looking like Figure 3-36.

75

CHAPTER 3 © AMAZON WEB SERVICES

« C & Secure hitps://cONSOM.BWS.AMaZON.COM lambdahomeregion sus-sast- 18 functions/UpdateRecipes Tadd TriggerModal=openiitabetriggers aw QO ¢
1 Apos gy Workdey captech [Learning Locker & Duvelope: - Interm.. ACloud Guny [Uinieain () 2017 tetern Progra. 0 AWS Al Blog () Gitbub /7 FlightStats Develop. @ Alexa ! Coks-Echo - Gitlab

' trigger. Chck on The box baktw 10 salect your GO fyDe.

u‘n‘uﬂm

Lambda will acd the necessary foe Amazon 53
Buckat. Loarm mon about e LamEda pomissions model

Enabils trigger +

Figure 3-36. S3is configured to trigger our Update Lambda on a Put request. This means Lambda will be
triggered any time an object is uploaded to the S3 bucket we specified.

Now that an S3 event is set to trigger our Lambda, we can format our function to handle the event the
way we would like it to. The first step is understanding the event request that is coming in. To simulate this
request, [used the Set Test Event blueprint for the S3 PUT operation. The following JSON is what it provides:

{
"Records”: [
{
"eventVersion": "2.0",
"eventTime": "1970-01-01T00:00:00.000Z",
"requestParameters": {
"sourceIPAddress": "127.0.0.1"
b
"s3": {
"configurationId": "testConfigRule",
"object": {
"eTag": "0123456789abcdef0123456789abcdef",
"sequencer": "0A1B2C3D4E5F678901",
"key": "HappyFace.jpg",
"size": 1024
1
"bucket": {
"arn": "arn:aws:s3:::mybucket",
"name": "sourcebucket",

76

CHAPTER 3 © AMAZON WEB SERVICES

"ownerIdentity": {
"principalld": "EXAMPLE"
}
1
"s3SchemaVersion": "1.0"
1
"responseElements": {
"x-amz-id-2": "EXAMPLE123/5678abcdefghijklambdaisawesome/mnopqrstuvwxyzABCDEFGH",
"x-amz-request-id": "EXAMPLE123456789"
1
"awsRegion": "us-east-1",
"eventName": "ObjectCreated:Put",
"userIdentity": {
"principalId": "EXAMPLE"

)
"eventSource": "aws:s3"

We can format our Lambda to handle this request by creating a TypeScript model for the S3 PUT
request. We want to specify the object key so we can parse it and grab the associated DynamoDB item in
order to place the image URL with the correct recipe. The next section will cover how our Lambda function
handles this request.

Response to Trigger

As we did with the HTTP request, we will also rely on the AWS SDK to update our DynamoDB table. We want
to grab the object key from our incoming event and specify that as our key to the DynamoDB table. Once we
have the item we want from our table, we can make changes to it, such as adding an imageUr1 attribute and
attaching the public URL to the image of the meal.

'use strict';
exports. esModule = true;
var AWS = require("aws-sdk");
module.exports.UpdateRecipe = function (event, context, callback) {
console.info("Received event: ", JSON.stringify(event, null, 2));
var docClient = new AWS.DynamoDB.DocumentClient();
var table = process.env.TABLE_NAME;
var image = event.Records[0].s3.object.key.split('.");
var id = parseInt(image[0]);
// Update the item, unconditionally,
var params = {
TableName: table,
Key: {
"Id": id
1
UpdateExpression: "set ImageURL=:iurl",
ExpressionAttributeValues: {
":iurl": "https://s3.amazonaws.com/recipe-images-ms/" + event.Records[0].s3.object.key

b

7

CHAPTER 3 © AMAZON WEB SERVICES

ReturnValues: "UPDATED NEW"
};
var response = {
statusCode: 200,
message: ""
};
console.log("Updating the item...");
docClient.update(params, function (err, data) {
if (err) {
response.statusCode = 500;

console.error("Unable to update item. Error JSON:", JSON.stringify(err, null, 2));

response.message = "Unable to update”;

callback(null, response);

}

else {

console.log("UpdateItem succeeded:", JSON.stringify(data, null, 2));
response.message = "Updated recipe successfully.”;

callback(null, response);

}
D;
1

The following steps summarize this process:
1. Parse the incoming request to gather the key from the image.

2. Setthe Image ID to the Key ID to search DynamoDB and find the correct recipe.

3. Your bucket ARN is the beginning of the S3 object image URL. Use this and the
name of the image to set the URL in the DynamoDB table.

4. Finally, return the status of the execution.

To test the success of our function after zipping it with the Shared folder and the node modules, we can
upload an image to our S3 bucket. I found a picture of mac & cheese, one of my recipes, and uploaded it to
the bucket. To upload to the bucket, simply go to the bucket location and click Upload. The prompt is shown

in Figure 3-37.

78

CHAPTER 3 * AMAZON WEB SERVICES

L 3 C @ Secure hips://CONSON.IWS.MAZON.COM/s3/buckets/recipe-images-ms/Tregionsus-east- 1S1absoveriew a+ 00
i Apps y Workdey ceptech [Leaming Locker & Developer - interm_ A Cloud Guru [5) Linkedin (] 2017 intern Progra_ 43 AWS Al Blog () Github # FlightStats Develop_. @ Alexa A Coke-Echo - GitLab

_' Set perresions Sat properties

Figure 3-37. You can upload the file within the S3 console and configure its permissions on the fly

Figure 3-38 shows the log results from the upload.

& C @ Secure NIPS://CONSOM.IWE.SMATON.00M/ cloudwatch/home Tregions=us -east- 1 BogEventViewer:group = lewslambda/UpdateRecipes; streams= 201 7/08/1 I/%SBSLATES TR SDaasd8 a+ 00
i Apps y Workdey captech [Learning Locker ® Developer - interm_ ACloud Gure [Unieain [I] 2017 tatern Progra_) AWS AiBlog () Gitbub A7 FiightStats Develoo.. @ Alexa gl Cole-Echo - GitLab .

RODS

22 *

c > Log » » 201708
Dashboards
Alarms 4 Espandal @ FRow T & © 0
Fier evanitn o s Sm th & id Iw custom -
Tiene (UTC +00:000 Mlesasge
Eventa 2007-08-13
17-08-1
Ho ider events found af the mament. Retry
Futes . OTE2 STAAT Requestia. SS0E0IST -5008- 1187 -bacs- 338¢ 151 44c0d Verson: $LATEST
| Logs L8 3 H 200706 1ITOTARA2 T -5008- 1167 -bdch- vert: | "Pecords”: [{ "eventVersion”. *2.0°. "evertTime": *1570-01-01T0C00:00.0002", “requestPa

Metncs v T2 F017-08-13T07. 19127557 $8060357-5008- 1 167-5ac- 335015144000 Updating the fem
N ATE] 2017-08- 13071913 2742 GBALAST-S008- 1 Te7-bech { *Attrinten® | “ImagelfiL"- “hitpe:ifsd ags-mat g |
»oaTEd END Roguestid: $805015T-5008- 1 1e7-Doc8- 304¢ 15184000
» OTARN REPOAT Requestic. SALALIST-S008-1 1eT-bac8- X35 1 5144000 Duration: 116091 ma Biled Duration: 1200 ms Memory Siee 128 MB Max Memory Used 30 M8
v 72038 STAAT Requestict ¢c 711 X0e-5008-1107-0501-ac23T1e87 10f Verson: SLATEST
» 072038 2017-08-13T07 3038 0537 oo 711 300-5008- 1 19T-0500-ac3 7ol 7 1ol Received event: | “Records’: | { "everfVersion”: *2.0", "eventSource”. “swscsd”, “swaflegion”: "us-sast-1", "ever.
v 072038 2017-06-13T07 2038 0542 00711 39e-5008- 1 107 -G600-ac2I el ol Updating the Rem.
- 072038 2017-08- 1 3TO7 20-38 43T cTT1 Moe-S008- 1 10T -G600-acZI TTel T 1ol Updatehemn succeeded: | "Atvrituies”: | “Imagelf. " “Mips./sd rBCIpe—Tage et 1)
2007 -06-19T07:20: 38432 S004-11e7- s sccesded:

“Mteibetes”: {
"IMapeURL™: “BULES /8] anasonces, con/ recipe- Lacges-aarl. jog”

¢ 072038 END Reguestid. cc 711 Je-5008- 1167 95008 el T 1!
v 072038 REPOAT | ¥oe-5008-1197. Tof Durwson: 398.04 400 ma Memory S 128 MB Max Memory Used: 34 M8
N rwer events found B the momant

Figure 3-38. The successful log results from our upload in CloudWatch

79

CHAPTER 3 © AMAZON WEB SERVICES

We can also test the upload by looking directly in the DynamoDB table. As shown in Figure 3-39, the
ImageUrl is now added as an attribute with the provided image URL.

2 @ Secure hitps://console.aws.amaron.com)dynamodt 5-east- 181 slected=Recks aa Q0O ¢
% Aops iy Workdday ceptach [B Laarming Locker & Developer « Interm. A Cloud Gury [Uinkedin (] 2017 bntern Progea AWS Al Blog () Github A7 FlightStats Deveion_ @ Alexs gl Coke-Echo - Gitlab

DynamoDB) m i = Recipes Ciose O = B @
Dasrtoard
Overview Mems Maotica Alems Capacity Indexss Triggers Access control Tags
Tabdes O Filter by table name x
s gy iy - ° o

Ermpicrynes. Scan: [Tatde] Recipes: d A Viewing 1 to 4 Rems

[scan] (Tavie) Reciows: 14 o~

O Ada e

Figure 3-39. The ImageUrl attribute has been added to the table along with the URL

Furthermore, when you open the provided image URL, you are redirected to an image of the recipe
(Figure 3-40).

80

CHAPTER 3 " AMAZON WEB SERVICES

¥ @ Secure hipa/s3.amazonaws.com;

P apps wy Worknaey coptech B Learning Locker & Developes - interm, ACioud Gune [3) Uniein [T 2017 etern Progea. AWS M Blog () Giriub A FightStats Develop_. 8 Alexs Iy Coke-Echo - Gitlab

« 2w = A sowmn x

Figure 3-40. The image is publicly accessible with the S3 URL

As before, there are many ways to improve on this Lambda function. Separation of provider logic is
strongly encouraged as well as deploying with the Serverless Framework. The code for this portion of the
exercise can be found at https://github.com/mgstigler/Serverless/tree/master/AWS/aws-service/
StorageTrigger

Conclusion

In this chapter we explored two serverless applications with AWS Lambda. You learned how to navigate the
console, configure Lambda functions, and assign triggers, as well as how to build a couple services to both
trigger and respond to Lambda functions. You should now have a good handle on how Lambda functions
operate and the power they have within AWS. You should also have a more applicable understanding of
serverless functions as a whole and how they can be used. In the next chapter, we will explore the Azure UI
and build serverless functions within Azure.

81

https://github.com/mgstigler/Serverless/tree/master/AWS/aws-service/StorageTrigger
https://github.com/mgstigler/Serverless/tree/master/AWS/aws-service/StorageTrigger

CHAPTER 4

Azure

In this chapter, we will utilize Azure Functions to create several serverless applications. Previously, we
looked at AWS and created two functions, one triggered by an S3 bucket upload and one triggered by an
HTTP request. We will recreate these two triggers with different real-world examples using Azure’s services.
This will give us a look into Azure’s resources and how they differ from AWS. It will also allow us to explore
other ways to create and use serverless applications. For the following exercises, we will use Azure functions,
WebHooks, API triggers, and Azure Queue Storage. By the end of this chapter, we will have three serverless
applications and experience with several Azure services as well as a better understanding of picking cloud
providers.

Note We will be looking at different services than we did in AWS to provide exposure to different trigger
sources. As further exercise, | recommend going back to Chapter 3 and trying to implement those same
solutions using Azure. You could also do the reverse and take the exercises from this chapter and look at them
in AWS.

Explore the Ul

As we did with AWS, before we begin writing our applications, we will go over the Azure UI and how to
navigate it, along with the various pricing options, and the Functions portal. I am someone who started
developing in AWS and became very comfortable with the environment and UI that Amazon provides.
Ultimately, making the jump from AWS to Azure isn’t a tough one, but the interfaces do vary a bit, and that
can be a little tricky to get used to. To help ease this difference, I'll walk through it pointing out various
comparisons and differences between the two. To get to the Azure portal, go to http://www.portal.azure.
com. After signing in, you will be directed to your dashboard. The dashboard gives you an overview of your
resources, some tips and tricks, and your running services. Figure 4-1 demonstrates an example Dashboard.

© Maddie Stigler 2018 83
M. Stigler, Beginning Serverless Computing, https://doi.org/10.1007/978-1-4842-3084-8_4

https://doi.org/10.1007/978-1-4842-3084-8_4
http://dx.doi.org/10.1007/978-1-4842-3084-8_3
http://www.portal.azure.com/
http://www.portal.azure.com/

CHAPTER 4 © AZURE

€« C @ Secure hitps://portal.ozure.com/#dashboard/private/66ef806-c 85 1- 47 de-Bbfe-beSEHAa2100d Do@

Ul Apas gy Workdey captech B Learning Locker & Dewelapes - Intesm. A Cloud Guru [Linkedin AWS Al Blog () Gitbub Y FlightStats Develop.. @ Alexa) Coke-Echa - GitLab [Propossd Tracker -_.

Dashboard ~ + mewaswswoss o condashboars & share . Rullsowsn O Clons

Al resources. Quickstart tutorials mac-attack
ALL SUBSRITIONS. 8T sEmCL

A MacAttack Cognitive Services
"t Windows Virtual Machines &2

begincingserverbl Siocage secoue SR Provison Windows Server SOL Server. SharePoint ¥Ms
beginmingServerdess Application Insights
beginringServerdess App Service Limux Virtual Machines =

Prorvision Ubsuntia Ried Hat, Cont0rS, SUSE CoreQ'S Vs
EastUSPlan App Sendce plan

EastUSPlan App Servce plan
App Senvice [
App Senace " Create Wels Apps wsing NET, Java, Node s, Pythan, PHP

Storage stcount
Appiication Insights " Functions &

< Peocess events with 3 serveress cede archieciure
See more

- PR o SQL Database 12
B tatapie B bt vt s a5

Figure 4-1. Azure gives you an overview of your resources and running services. It also gives you access to
creating new resources on the left panel.

Something that I really enjoy about the Azure dashboard is its ability to be customized. By clicking the
Edit Dashboard option at the top, you can easily add other resources, move resources, and add tiles. A tile is
simply a single block on your dashboard (examples include All Resources, Service Health, and Marketplace
in Figure 4-1). The Tile Gallery is a tool that allows you to search for tiles for a particular resource and drag
them onto your current blade (as you'll see shortly, a Ul to specific resources). Through this, you are able
to make management views spanning resources. You also have the ability to create and view multiple
dashboards. I like to use different dashboards for different projects so I can keep all of my resources visually
separated. You can give each dashboard a project name to keep organized.

Note It is important to keep in mind that the Ul in Azure changes quite often, possibly even more so than
other providers. It would not be uncommon to log in one day and see a different Ul or items with changed
names.

Navigation

We've explored a lot of the capabilities of the dashboard, but there are many other points of interest straight
on the portal page that will benefit us to understand early on. As in AWS, there is a bell icon on the top
black bar that gives us any service updates from Azure. Next to the bell, we have the Cloud Shell. This is a
feature that I really love, so I will spend some time going over it. Figure 4-2 shows the startup screen of the
Cloud Shell.

84

CHAPTER 4 © AZURE

3 C @ Secure hitps//portal.azure.com/#dashbosrd privateEBefBOMG-cB5 1-474¢-Bble-beS584a2100d * Do @

! Apps Workday captech [Leaming Locksr & Developer - Interm._ A Cloud Guru [Linkedin AWS a1 Blog () Gittub Y FlightStats Develcp.. 8 Alexa) Coke-Echa - Gitlab [J- Proposal Tracker -

Dashboard v + Mewdsstbosdt & Editdashbosrd 3 Share . Fulscreen (5 Clone

Windows Virtual Machines 2
Storage Meount Provision Windows Server, SOL Server. ShanPoint Vi

Appiication Insights

App Servce Linux Virtusl Machines (2
Provision Ubusta Ried Hat, CeatOS, SUSE CoreQ'S VM3
App Serice plan

App Service plan
#Ta App Service 2
)

App Sarvice VA= Create Vi Apps unig T, love, Nk . Prthon, PHP

Storage stcount

Appiication Insights s Functions (2

PIBCS bens WY B Serveriens Cete MEhIecture
See mare

SQL Database [+
OB corice teamn BY veesince o s

Managed relstions! S0L Dutbiea 45 & Senice

Bash v I 7 (D Azure CLI Documentation - g x

Your cloud drive has been created im:

Id: ale d 1
Resource group: cloud-shell-storage-eastus
Storage account: calalcllalécddlxdcodxash
File share:

1003621

g1 i1

nitializing your accoust for Cloud Shell...\
Cload Shell

Comnecting terminal...
Welcome to Azure Cloud Shell (Preview)

Type “help® to learn about Cloud Shell
Type "az® to use Azure CLI 2.0

maddie_stiglerfhsurei-$ [

Figure 4-2. When you click the Cloud Shell icon, Azure pulls up a Bash Shell that comes with the Azure CLI
and many other features.

As of now, you can use the Shell to execute Bash commands or switch it to a PowerShell preview.
I suspect the PowerShell option will be coming out pretty soon, but for now, the preview will do. By typing
in az, you get the full Azure CLI. This is an incredible feature. The ability to grab the CLI in one command
straight from the portal makes things so much easier. To me, this takes a step even further away from relying
on anything locally and further places it in the cloud provider’s location. This is something you will probably
notice with Azure as we move forward; Microsoft has done a great job of removing as much from the local
workspace as possible. I predict this will continue to be a trend and will be something that other cloud
providers, such as AWS and Google, catch up on.

Note Azure shell sessions aren’t persistent, but your data will be stored between sessions. In addition,
sessions are automatically synced to a $Home directory that now allows you to save files and scripts for reuse.
This also means you can now use vi right from the Azure portal.

Azure provides us a list of some things to keep in mind when using the Azure Cloud Shell:
e Cloud Shell times out after 10 minutes without interactive activity.
e Cloud Shell can only be accessed with a file share attached.
e Cloud Shell is assigned one machine per user account.
e Permissions are set as a regular Linux user.

e Cloud Shell runs on a temporary machine provided on a per-session, per-user basis.

85

CHAPTER 4 © AZURE

Ultimately, we get a lot out of the box from the browser-based shell that allows us to develop quickly
without spending a lot of time on environment setup and installation. This idea falls in line with a lot of what
serverless computing is. Cloud providers are here to ease the development process by providing as much off
the bat as they can.

Some other notable navigation points of interest include resource groups, storage accounts, billing, and
function apps. While AWS does give you the ability to create resource groups, they are much less enforced.
By contrast, creating any resource in Azure requires assigning it to a resource group. Although sometimes it
can be a bit of a pain to have to create a resource group while you're really just trying to get your application
up and running, I have to say I think they're a great idea. A resource group is essentially a container used to
hold all of your related resources for a solution.

Azure also uses the concept of a blade to explore different resources. A blade is essentially a Ul for a
specific resource. Figure 4-3 shows the Resource Group blade that the Azure portal provides.

¢ O @ Seewn

& Dewioper - interme_ A Coud Ouwru [Uinkedin 8 AWS AlBisg () Otbiub A7 FlightStats Develop_ & Mean ! Coke-Echa - Gilat [Progosal Tracke

sl machines
& Load balancen

BB Siage sccounts

Virtual networks

Figure 4-3. The Resource Groups blade allows you to view all of your resource groups, create another resource
group, and organize your current groups.

In this portal, I have a resource group for beginning serverless, which contains all of my resources for
our first serverless example, our cloud shell storage (this is required to use the Cloud Shell), and then a
couple of bot storage groups. You can also give different resource groups different tags to sort them even
more generally. Some people use this as a way to keep different development environments separate. An
example of this would be creating resource groups for your different solutions and tagging them as Dey,
QA, Production, or whatever you choose. You can then filter them in the future by specific development
environment.

The Storage Account resource (Figure 4-4) is another Azure service that you will be accessing frequently
while using Azure as your cloud provider. Similar to resource groups, most Azure services require you to
assign them to a storage group. In my experience, this actually simplifies things later on because you know
exactly where everything is ending up and how to monitor and configure it. One of the tricky aspects of
AWS is that Amazon handles a lot of this setup for you, and if you are unfamiliar with the provisioning and
configuration, there could be seemingly random security groups and settings that aren’t as obvious to find.
By creating these elements specifically for your resource group, you know exactly where to go to make any
configuration changes.

86

CHAPTER 4

tal.azure.com

warning Locker & Developer - Interme ACloud Gury [3) Linkedin @ AWS Al Blog () Github 7 FighiStats Develop_. @ Alexa Iy Coke-Echo - Gitlab [Proposal Tracies -

raa @ BE Coumns L) Refresh

[uter by rame Al PEIOUIOE GrOuPS v | Mtype v A lecations

Nane ™ aND ELOURL T CROUR

T beginninguereeritc! Saorage sccount Storage BeginnagSerere

5 beginningierverbifn Storage sccount Storage Beginning Serveress
exZatedZaZbetdintordxaty Stovage sccount Storage cloud-shell-storage- eastun

s attackodome! Seorage sccount Sronage Mac-Attack

Figure 4-4. The Storage Accounts Blade lets you view all of your storage groups and the resource groups
associated with them

Asyou can see, I have a storage account associated with each of my resource groups viewed earlier.

AZURE

All of the objects in a storage account are billed together. Azure recommends you keep the following in mind

when creating storage accounts:

e Account type refers to whether you are using a general-purpose storage account or
a Blob storage account. With a Blob storage account, the access tier also determines
the billing model for the account.

e Storage capacity refers to how much of your storage account allotment you are using
to store data.

e Replication determines how many copies of your data are maintained at one time,
and in what locations. It is also important to note that pricing is different for some
of these replication options. It is worth looking into before making the decision and
getting a bill you aren’t expecting.

e Transactions refer to all read and write operations to Azure Storage.

e Data egress refers to data transferred out of an Azure region. When the data in your
storage account is accessed by an application that is not running in the same region,
you are charged for data egress. (For Azure services, you can take steps to group

your data and services in the same data centers to reduce or eliminate data egress
charges).

e Theregion refers to the geographical region in which your account is based.

Service Accounts for specific accounts give you options including viewing the services included in the
account, adding access keys, providing metrics on your resources, and gives you access to services such as

Tables, Queues, Blob Storage, and Azure VMs. Figure 4-5 gives you an overview of all of these options.

87

CHAPTER 4 © AZURE

W Secusiny Coneer

E)\\JD ue pumie [moes e gRee [onse I-u.c wus Josas fue e
o] Oms

] o O Oe Os Os Oms Oms 10ma

Figure 4-5. The Storage Accounts Blade also gives you insight into particular storage accounts with various
actions and metrics on the account itself

You are also given storage account endpoints to be able to easily and quickly access the resources
in your storage account. Each URL address is unique to the object stored in Azure Storage. The account
name forms the subdomain of that address, so the combination of the subdomain and domain name forms
the endpoint for your storage account. For example, my beginning serverless resource group is under the
storage account beginningserverbffb.

e Blob service: http://beginningserverbffb.blob.core.windows.net

e Table Service: http://beginningserverbffb.table.core.windows.net
e File Service: http://beginningserverbffb.file.core.windows.net

e Queue Service: http://beginningserverbffb.queue.core.windows.net

In addition to storage and resources, we will also look at how to access pricing and billing from the
Azure portal.

Pricing

From the Billing blade (Figure 4-6), we have access to very general billing information such as invoices,
payment methods, and subscriptions.

88

http://beginningserverbffb.blob.core.windows.net/
http://beginningserverbffb.table.core.windows.net/
http://beginningserverbffb.file.core.windows.net/
http://beginningserverbffb.queue.core.windows.net/

CHAPTER 4 * AZURE

Figure 4-6. Your Billing blade gives you a very general overview of your billing information and subscription
information

I personally prefer the Billing portal in AWS to Azure, mostly because of the accessibility and ease of
use compared to the actual functionality. In AWS, we were able to do everything in our billing management
from the same portal. In Azure, you are given a very basic overview and are required to go to the actual Azure
account page (in a different portal) to manage your account billing.

Another difference is that in Azure, you can set billing limits and have your items stopped if they hit that
limit. This is different than in AWS where you can only set a billing alarm.

From the actual subscription in your billing, you can view different metrics such as cost by resource,
cost analysis, and usage. You can also control IAM, transferring of subscriptions, and the resources
associated with the particular subscription.

Azure Functions

The Azure Function Apps are accessible from the side Resources panel. When you open it, you are directed
to the Functions blade. This blade shows all of your function apps and the project structures of each.
Figure 4-7 demonstrates the Functions blade.

89

CHAPTER 4 © AZURE

€ @ Secure hitps:|/portal.azure.com * DOo@ :

! Appe y Workday captech B Learning Locksr & Developer - Interm._ ACioud Guru [Linkedin i AWS Al Blog () Gitub A7 FlightStats Develop.. 8 Alexa M) Coke-Echo - Gittab [Proposal Tracker -_.

maddie stiglerg

B M subscritions ~// Function Apps

£= Fundtion Agps e LOCKTION
g Serer Pay-hs-You-G inningSers = southcontraius
o> haghikegSarvartass beginningServeriess ay-As-¥ou-Go beginningServericss scuthcentr

v 3= Functions

& Manage

Q Montor

m
& 3= Prosdes (preview)
- » IS Sots (prview)

e &

Figure 4-7. The Function Apps blade with all of your functions and project structure

I was reluctant to embrace Azure functions because I had done so much development with AWS
Lambda and cloud development within the AWS sphere. However, after navigating around Functions for a
little bit, I quickly became a huge fan. One of my qualms about AWS Lambda was the inability to view and
navigate project structure efficiently. Azure solved this problem by giving you a way to access your project
structure, easily make changes and configure your serverless applications, and do all of this in one spot.

I do think this is something that will be available with AWS as it continues to grow. For now, it is an
incredibly helpful feature within Azure functions and something that should make rapid development even
quicker. Azure also incorporates the idea of inputs and outputs, which can be configured from the Integrate
blade in your particular function. We discussed inputs and outputs briefly, but they basically just allow you
to bind additional data to your function (such as retrieving from a table) as they are triggered. Figure 4-8
shows the project structure of a simple Hello World function we will be exploring later.

90

CHAPTER 4 * AZURE

€ C @ Secure hitps:|/portal.azure.com * Do@:

3! Apps wy Workday ceptech B Leaming Locker & Developer - Inteem_ ACloud Gury [Linkedin AWS Al Blog () GitHub ¢ FlightStats Develop.. @ Alexa) Coke-Echa - Gittab [Proposal Tracker -

Function Apps

o incexss NI | >~ T >
Al subscriptions 1 module.exports = function (context, req) {
2 context. Logl ' JavaScript HTTP trigger fusction processed a request.’); +Add {Upload @ Delete
I= Function Apps
= it {req.query.name || (req.body & req.body.namel) {
— = - context.res = { B M irigger 51
T e B8 e 7 200, fe Defaults to 200 o/ 3
Body: o = + {req.query.nase || req.body.nase) function.json
+ L
¢ } Y index.js
v f HapTngoest else
TR context.res = {
I, status: 489,
13 body: maie pass & nase on the guery string or in the request body™
& Manage 14 i
1 1
Q Honmor 16 context, donel);
b 1= Prosdes (preview) +
» IS St (pnview) +
Logs Wreuse @ Cesr TCopylogs S Bxpand W

}148 Meloome, you are now connected te log-streaming service.

Figure 4-8. The Azure Function Apps lets you view your function based on its configuration, as seen on the
left. It also lets you view your function’s project structure and edit the various files contained within it.

We will explore the Function Apps and all of their capabilities in more detail as we begin creating our
solutions. However, before we can get started creating our functions, we should look at Azure security. We
did this with AWS as well when looking into IAM. It is good practice to have a good understanding of each
provider’s security capabilities so you can create secure yet accessible applications. Azure helps you out
more than you expect by requiring you to associate all of your resources with an application. This leads to
better organization and less confusion when configuring permissions. I tend to get a little confused when
I'have a lot of roles and different permissions, so creating it from the start and knowing it is specific to the
exact resource I am creating helps me out a lot.

Azure Security

We can navigate to Azure Security by clicking on the Hamburger and going to More Services and Security
Center. The Security Center will look something like the dashboard in Figure 4-9.

91

CHAPTER 4 © AZURE

vvvvv se @ ANE AR ()0BAE A Fighttints e & Meus

sty

W drw dction Divciony

Figure 4-9. The Azure Security blade gives you access to an overview, prevention, detection, and advanced
cloud defense with your account and services

The Azure Security Center helps you prevent, detect, and respond to threats with increased visibility
into and control over the security of your Azure resources. It provides integrated security monitoring
and policy management across your Azure subscriptions, helps detect threats that might otherwise go
unnoticed, and works with a broad ecosystem of security solutions. Microsoft lists several key capabilities:

Azure Security Stages

Stage Capability

Prevent Monitors the security state of your Azure resources.

Prevent Defines policies for your Azure subscriptions based on your company’s security
requirements, the types of applications that you use, and the sensitivity of your data.

Prevent Uses policy-driven security recommendations to guide service owners through the process
of implementing needed controls.

Prevent Rapidly deploys security services and appliances from Microsoft and partners.

Detect Automatically collects and analyzes security data from your Azure resources, the network,
and partner solutions like antimalware programs and firewalls.

Detect Uses global threat intelligence from Microsoft products and services, the Microsoft Digital
Crimes Unit (DCU), the Microsoft Security Response Center (MSRC), and external feeds.

Detect Applies advanced analytics, including machine learning and behavioral analysis.

Respond Provides prioritized security incidents/alerts.

Respond Offers insights into the source of the attack and impacted resources.

Respond Suggests ways to stop the current attack and help prevent future attacks.

You can access these capabilities from the Security Center in the portal.

92

CHAPTER 4 * AZURE

Implement Recommendations

Security Center periodically analyzes the security state of your Azure resources. When Security Center
identifies potential security vulnerabilities, it creates recommendations that guide you through the process
of configuring the needed controls.

These recommendations provided by Azure are something you should check routinely. I went back
after creating my applications for this chapter and implemented the security recommendations from the
Security Center. Figure 4-10 shows what my recommendations were and how you can easily find them on
the blade.

Figure 4-10. The Azure Security blade gives you access to an overview, prevention, detection, and advanced
cloud defense with your account and services

The recommendations are shown in a table format where each line represents one particular
recommendation. The columns of this table are:

DESCRIPTION: Explains the recommendation and what needs to be done to
address it.

RESOURCE: Lists the resources to which this recommendation applies.
STATE: Describes the current state of the recommendation:
Open: The recommendation hasn't been addressed yet.

In Progress: The recommendation is currently being applied to the
resources, and no action is required by you.

Resolved: The recommendation has already been completed (in this case,
the line is grayed out).

93

CHAPTER 4 © AZURE

SEVERITY: Describes the severity of that particular recommendation:

High: A vulnerability exists with a meaningful resource (such as an
application, a VM, or a network security group) and requires attention.

Medium: A vulnerability exists and noncritical or additional steps are
required to eliminate it or to complete a process.

Low: A vulnerability exists that should be addressed but does not require
immediate attention. (By default, low recommendations aren't presented,
but you can filter on low recommendations if you want to see them.)

Some of my recommendations came from my Pay-As-You-Go plan. Azure wants you to use the Standard
plan, which is a bit pricier. For the sake of this project, you can stick to the free tier and then shift up as you
start needing more from your plan.

Set Security Policies

The last thing I want to look at in the Security Center before jumping into our function is the security
policies. A security policy defines the set of controls that are recommended for resources within the
specified subscription. In Security Center, you define policies for your Azure subscriptions according to your
company/personal security needs and the type of applications or sensitivity of the data in each subscription.

For example, resources that are used for development or testing might have different security
requirements from resources that are used for production applications. I am currently developing an
application for my client in AWS and we are also using policies and different accounts to set up different
resources for different development environments. Likewise, applications that use regulated data like
personally identifiable information might require a higher level of security. Security policies that are enabled
in Azure Security Center drive security recommendations and monitoring to help you identify potential
vulnerabilities and mitigate threats. If you are developing for a company based on its security needs, I
recommend reading Azure Security Center Planning and Operations Guide: https://docs.microsoft.com/
en-us/azure/security-center/security-center-planning-and-operations-guide.

We can configure security policies for each subscription. Start by clicking the Policy tile in the Security
Center dashboard (Figure 4-11).

94

https://docs.microsoft.com/en-us/azure/security-center/security-center-planning-and-operations-guide
https://docs.microsoft.com/en-us/azure/security-center/security-center-planning-and-operations-guide

CHAPTER 4 © AZURE

A Ot G [) Linkecin 8 A3 Al g () Otk 7 FighitSiats Dremics.

0.30us

[0.01

— T B looo.. T35 53

Figure 4-11. The Policies for each subscription are available in the Security Center dashboard

In this blade, we can edit security policies by clicking on the subscription we want to edit. The available
options for each subscription include these:

e Prevention policy: Use this option to configure policies per subscription.

e Email notification: Use this option to configure an email notification that's sent on
the first daily occurrence of an alert and for high severity alerts. Email preferences
can be configured only for subscription policies.

e Pricing tier: Use this option to upgrade the pricing tier selection.

e Security Policy: In this blade, click Prevention Policy to see the available options.
Click On to enable the security recommendations that are relevant for this
subscription.

Since we are using functions for our serverless application, we will not need to edit much in the
Security Policies section. However, is the options here are good to know moving forward, so when you start
incorporating different services in your application you’ll know where to set the security policies.

Your First Code

In this section, we are going to cover the basics to setting up a Hello World function, similar to the one we
created in AWS. It's important to redo these steps with a small function first because while you get a lot of the
same out of the box, each provider is very different and the setup can be different, too.

95

CHAPTER 4 © AZURE

Hello World

We are going to start by creating our Hello World function through the Azure portal. To begin, instead of
navigating straight to the Function Apps blade, click the New button in the upper-left corner of the Azure
portal and navigate to Compute » Function Apps (Figure 4-12) and click your subscription. My subscription
is a “pay as you go,” which is what I recommend for getting started.

A Gt Gurw [0 Linkwcn 8 A3 M Biog (P OTb A7 FightSants Dwre

Agure Markntplace

artes

P ——

© saorso

* sovr

B Seosy o
O Cont Managerarst » Mg
& e+ voport

oy services

Figure 4-12. We are going to create a new Azure Function through the Function App option in the New
resource blade

You will need to fill out a couple of things to create your hello world function including the App Name,
Subscription, Resource Group, Hosting Plan, Location, Storage, and yes or no to Application Insights. I've
listed some helpful hints that Microsoft gives you regarding filling out these various fields:

e App Name: Globally unique.
¢ Resource Group: Name of the resource group to create your app in.

e Hosting Plan: Defines how resources are allocated to your app. In the default,
resources are added dynamically as required by your functions. You only pay for the
time your functions run.

e Location: Choose one near to where your services will run.
e Storage Account: Also globally unique, name of the new or existing storage account.

Figure 4-13 shows the final settings for my serverless function app.

96

CHAPTER 4 * AZURE

L = C @ Secure | https://portal.azure.com

i3 Apps Workday captech [Learning Locker & Developer - Interme A Cloud Guru
AZure New > Function App

Function App B X

Create

App name

ning ServerlessComputing

Arurewebsites.net

Pay-As-You-Go w

* Resource Group @
© Create new Use existing

beginning ServerlessComputing

* Hosting Plan @
Consumption Plan w
* Location
South Central US v
torage O

O Create New | Select Existing
beginningserver38b1
Application Insights @ On Off

* Application Insights Location @

East US w

m Automation options

hitps:j/portal azure.com/#

Figure 4-13. I put my Hello World function in my region and created a resource group of the same name

Note Itis important to remember that your app name and your storage account must be globally unique.
You will not be able to name them the same as mine, so pick something that still defines what you are building.

I chose to pin the function to my dashboard to make it easily accessible moving forward. Once you are
ready to go, click Create to create and initialize your Hello World function. When you click Create, Azure will
take you back to the portal while the function is being created (Figure 4-14). If you chose to save it to your
dashboard, you will see the App’s creation progress directly on your dashboard. If you didn’t, you can still
view the progress by clicking on the bell in the top-right corner of the portal.

97

CHAPTER 4 © AZURE

& C' @ Secure https://portal.azure.com

! Apps y Workday captech ™ Learning Locker # Developer - Interm... A Cloud Guru Linkedin

,O Search

0 Search -+ New function

o $= Function Apps f Functions
w (> beginningServeriess oD L Search functions
L .
w = Functions e
’ i NAME v ENABLED v
= w == Proxies (preview) - No results
-
P i= Slots (preview) +
e
[®]
¢

Figure 4-14. Notice that the project has been created, but there are no functions listed underneath it

In Azure, we create larger resources groups before creating the actual resource. In AWS, we created the
function directly. AWS requires fewer steps, but Azure gives you slightly more organization and allows you to
look at it as you are accustomed to doing as a developer. This method also lets you keep all of your functions
associated with the same project together. In AWS, it can get a little hectic trying to keep all of a project’s
functions together. It is really up to what you prefer as the architect.

When we click the plus icon next to functions, we are taken to the startup page, which gives you three
out-of-the-box templates for creating a function. These options are:

e WebHooks and API
e Timer
e Data Processing
You are also given three runtime options:
e FESharp
e (CSharp

e JavaScript

98

CHAPTER 4 © AZURE

We are going to select the WebHooks and API template so we can build off it later for our next function.
Azure actually gives you even more templating options than this if you click on Create Custom Function.
To me, this option name is a little misleading. These templates all already have triggers configured for each
runtime and each trigger option. In AWS, you are given far more template options to start out with, as well as
other runtimes. This gives you a little more flexibility as the developer. Azure also lets you create your own
custom function both in PowerShell and from the console. We are going to select the JavaScript runtime and
create our function. Figure 4-15 shows what your new function in our Hello World project should look like.

< C @ Secure hitps

portal.azure.com Qo@ i
H Apps g Workday caplech ing Lockse & Developer - Interm. ACioud Gunu [Linkedin 8 AWS Al Blog () Gtbub 7 FlightStats Develop.. @ Alexa byl Coke-Echo

itLab [Proposal Tracker
s Function Ap

pps - Functions

index.js “ <f> Get function URL Wiew files Test >
1 module.esparts = function (context, regh {
context.logl'JavaScript WTTP trigger function processed a request.’'); +Add |Upload @ Delete
w if (reg.query.name || (req.body && req.body.nase)) {
~ % context.res = { £ HtaTriggerS1
e ~ #H 80, /= Defaults to 208 =/ i
% “ « {req.query.nase || req.body.nase) Aamction jon
¥ [index. 3
. lease pass & nase on the query string or in the request body™
L
context. donel);
i
* +
| = +
+
-
w

Figure 4-15. The recently created function using the Webhook + API template

Asyou can see, we really do get a lot out of the box with this template. We now have a function under
our Functions option in our project. If we click on the function itself, we can see and edit the index. js file
to do what we want. Right now, the function takes a POST request with a name object and returns a string
saying “Hello {Name}” By clicking Integrate in the function options, we can see the trigger configuration for
the HTTP request (Figure 4-16).

99

CHAPTER 4 © AZURE

€ C @ Secure hitps:|/portal.azrure com * Do@ :

! Apoe y Workday captech rring Locker & Develaper - Interm.. A Cloud Gura [Linkedin

AWS A1 Blog () GitMub A FlightStats Develcp.. @ Aloxa by Cokn-Echo - GitLat [Proposal Tracker -
- Integrate B

rate

L Seswch ¥ Mdvanced ediior
Triggers o Inputs o Outputs @
H
HTTP (req) + Mew lngut HTTP {res)
“w
'y o » + New Dutput
" +
® B s HTTP trigger (req) ceete
L Q Monitor Aliowed HTTP methods O tode O
& v 1= Proxdes [preview) + {5 S——— Sancand
- ¥ IS Sous (preview) & Reguest parameter e O Ruonte terydate @

req

Authorization level ©

Fusetior

PO o

* Documentation

0 =

Figure 4-16. The Integrate blade lets you view the trigger (a mandatory feature of the Azure function),
configure inputs and outputs, and advanced HTTP features
In the HTTP Trigger section, we are given the following options:
e Allowed HTTP Methods: Configurable.
¢ Request Parameter Name: The name used to identify this trigger in the code.

e Authorization Level: Controls whether the function requires an API key and which
key to use:

e Mode: Standard or WebHook.
e Route Template: Allows you to change the URI that triggers the function.

For those of you who prefer to configure this manually, you can use the Advanced Editor in the top right
corner to edit the function. json file. This file determines the bindings and settings of the function trigger.
To begin, I thought it was easier to configure using the UI, but as I became more comfortable, I enjoyed
making these changes in the Advanced Editor because it became quicker.

In the Manage section under our function, you are given options to edit Function State, Function Keys,
and Host Keys (Figure 4-17).

100

CHAPTER 4 © AZURE

€ C & Secure hitps://portal.azure.com Qo@ i
ACloud Guru [Linkedin AWS Al Blog () Gitbiub Y FlightStats Develop.. @ Alexa) Coke-Echa - Gitlab [Propossd Tracker -_.

e . Bt
i
o»
L Function K
unction Keys
g = NAME VALUE ACTIONS
f vigger 151 defaut Click £ show) Copy = Renew * Risvoke
- © Manage
L
Q. Monltor Host Keys (Al functions)
& L MAME VALUE ACTIONS
master Click £ show 2 Copy T Rorew
| = +
default Click ko show €% Copy £ Rerew » Revoke
+
L]
L3
w
(o]

Figure 4-17. The Manage blade is where your keys and state can be configured and managed

You can use these keys as a query parameter in your requests. If your function is a WebHook (as
opposed to a regular HTTP function), when using a key other than the default you must also specify the
clientld as a query parameter (the client ID is the name of your new key). We will look at this in more detail
later as we build our function out. Now, we are going to jump into testing our function and seeing what it
comes with right out of the template.

Testing

To test our Hello World HTTP function, we are simply going to click back on the function name, and open
the Test blade on the right side of the portal. As you can see, the test options are provided for us to configure
and send through. The test options are already configured for your specific trigger, so we can see HTTP
request options including method, query, header, and request body.

For our function, all we need to kick things off is a request body with a name. I'm going to pass my own
name in as the request (Figure 4-18).

101

CHAPTER 4 © AZURE

€« C @ Secure hitps://portal.azure.com Qo@ i
ACkud Gura [3) Linkedin 8 AWS Al Blog () GitHub A FlightStats Develop.. @ Alexa) Coka-Echa - Gi

I Apps gy Workday captech

ning Lockes & Dwvelaper - Intesm.

<f> Get function URL

Al subscriptions 1 module.eaports = function {context, reqd { e

context. Logl ' JavaScript WTTP trigger fumction processed a request.’): HTTP mathod
= Function Ages -
= it lreq.query.name || (req.body &5 req.body.nane)) { i
ntext.res =
- e —— o SANERE ren = { Query

200, /x Defaults to 208 s/
o * = {req.query.nase || req.body.nase)

There ane 70 Query parameters
+ Add parameter

» f HupTriggenisi

R——
s¢ ass 8 name on the query string or in the request body™ <
© Manage { L
3 “nase": “Maddie”
Q Monitor 1 eontext, done(); 1
17k
= Prondes (preview) +
v $= Siots (preview) +

Logs Wrase @ Cear OCopyiogs " Dpand v

Outpt

@

» Fun

Figure 4-18. The sample test event with my name being passed into the request. Azure gives you the output
and the logs as soon as the request is complete.

The output and logs resemble AWS and are pretty easy to follow. Azure gives you a couple of extra
options for the logs including Pause, Clear, Copy, and Expand. Azure also provides all of the monitoring for
the function execution in the function blade. To monitor these logs closely, we will navigate to the Monitor
blade underneath our function. Here we are given the success count, error count, and the invocation log
with invocation details (Figure 4-19).

102

CHAPTER 4 © AZURE

€ @ Secure hitps

portalazure.com * Do @

1 Apps y Workday captech ing Locksr & Developer - Interm. AClkoud Guru [Linkedin 5 AWS Al Blog () GitHub ¢ FlightStats Develcp.. 8 Alexa g} Coke-Echa - Gittab [Proposal Tracker

s - Monitor

i Liing Al Apolication Insighis,

Ervor coun 1at
w f> beginningServeriess o»
L]
- » = Functions +
v f tpTiggenst
= g w— Invocation log = Refrest Invocation details
- Function Status Detalls: Last ran (duration) Parameter
© Manage POST,
HitpTrigger]5] (Method: POST, U: ...} - 9 minutes age (16 ms) » g Meghod: POST, Uri;
L] g e/ beginningserveriess ATurewebsites nelagiHeig Figger 51
Q Monitor HitpTrgger1S1 (Method: GET, Uri: ..} - 12 minutes ago (1,004 ms) - e

k5

& w 3= Prodes (preview) + HitgTrigger1S1 (Method: POST, Uni: ...} - 29 minutes ago (219 ms)
bnder

- b = Sots (preview) + context 2dbABAOL-leff-415c-58dc-17da01 Md 154
g

L Logs

€ ImatScript HTTP trigges function processed a request

-

L]

(o]

Figure 4-19. This figure shows the Monitor blade under the function we are testing and everything you get
from that blade

While this does provide us with the monitoring we need for a Hello World project, we are going to go
ahead and look into Application Insights, setting it up, and what we can learn from it.

Application Insights

Application Insights (Figure 4-20) is a powerful metrics tool that takes little effort to set up and associate with
your function. Azure recommends developers utilize Application Insights with all of their functions. To get
started, click the New button on the resources panel and choose Developer Tools » Application Insights.

103

CHAPTER 4 © AZURE

.- C & Secure | https://portal.azure.com/#

3% Apps y Workday captech MM Learning Locker & Developer - Interme... A Cloud Guru [I}] Linkes

Application Insights

Application Insights

10f web app performance and uiag

New Name ©

beginningServeriessAl]

Dashboard
* Application Type ©
All resources Node js Application v |
Resource groups * Subscription
Pay-As-You-Go v
App Services
* Resource Group ©
Function Apps © Create new Use existing
beginningServerlessA
SQL databases
* Location
4 Azure Cosmos DB East US P

Virtual machines

& Load balancers

Figure 4-20. Application Insights configuration for my beginning serverless function. Note that I put it in the
same resource group I had created earlier.

Once you create your Application Insights, grab the Instrumentation Key from the Essentials and
copy it. This key will be used to link our function to the Insights instance. From here, navigate back to your
Hello World function. Click on your project » Settings » Manage Application Settings. Under App Settings
(Figure 4-21), locate APPINSIGHTS_INSTRUMENTATIONKEY and paste your key into the box next to it.
Save these changes. This will tell App Insights what to watch and monitor. As soon as the key is associated
with your function, your application will start sending App Insights monitoring information about your
function without any other configuration.

104

@ Function Apps > Application settings

atform features

-in cn the Furction

CHAPTER 4 © AZURE

hitps:/portal.azure.com Qo@ i

¢ & Developer - Interm. A Cloud Guru [Linkedin AWS Al Blog) OitHub A7 FlightStats Develep.. @ Alexs My Coke-Echa - Gitl O Propoasd Tracker -

maddie stigler@grmail...

AP! definition (preview)

Rermate Visual Studio version

App settings

DefsuhindpeinsPretocals

beginringuerveriessabel

2pp that cannat be disabled and wi 96/54-2d 3 bladb

e ‘Manage' node for each function.

Connection strings

Mo results

Figure 4-21. This figure demonstrates how to add your App Insights Key to your function

Application Insights is a great tool not only because of its ease of use, but also for its extensibility. This
service spans many platforms including .NET, Node.js, and J2EE. Azure is currently the only provider to
support .NET Core for application monitoring. It can also be used on premises or in the cloud. I recently
started using Application Insights at my client site with an on-premises application, and it is just as simple
to use. It also integrates well with other cloud services and has several connection points to different
development tools, including these:

Azure Diagnostics
Docker logs
PowerBI

REST API

Continuous Export

These tools can be used to measure your Application Insights. Within Azure, Application Insights can

be explored

much more easily. Azure provides a built-in dashboard that allows you to explore all of your

insights for your function and export these insights. To experience the full extent of Application Insights,
navigate to the new resource we created in the dashboard (Figure 4-22).

105

CHAPTER 4 © AZURE

& Asure Acive Divectiny

® Morier

B v

W Secuty Corter

O Comt Masagurard » Bl
E Hep mppont

oy sarvcm

Figure 4-22,

Application Insights Blade for our Hello World Application

By just clicking on the blade, you are given a lot up front including alerts, availability, app map, health,
and total requests. These give you a good overview of your function, but a lot of the power of Application
Insights remains to be seen. By going to the Analytics tab, you are redirected to an Application Insights
page that gives you everything you need to continue monitoring your application. Microsoft provides these
additional features as well:

106

Request rates, response times, and failure rates: Find out which pages are most
popular, at what times of day, and where your users are. See which pages perform
best. If your response times and failure rates go high when there are more requests,
then perhaps you have a resourcing problem.

Dependency rates, response times, and failure rates: Find out whether external
services are slowing you down.

Exceptions: Analyze the aggregated statistics, or pick specific instances and drill
into the stack trace and related requests. Both server and browser exceptions are
reported.

Page views and load performance: Reported by your users' browsers.
AJAX calls from web pages: Rates, response times, and failure rates.

Performance counters from your Windows or Linux server machines, such as CPU,
memory, and network usage.

Host diagnostics from Docker or Azure.

Diagnostic trace logs from your app — so that you can correlate trace events with
requests.

Custom events and metrics that you write yourself in the client or server code, to
track business events such as items sold or games won.

CHAPTER 4 * AZURE

HTTP Events

We are going to look at HTTP events in two parts: WebHooks as a trigger and API as a trigger. For our first
built-out Azure function, we will build a simple WebHook application. In our second one, we will build
off our Hello World function. I wanted to explore WebHooks because this is a feature Azure provides to
users and it departs from AWS resources a bit. Before beginning, it is important to understand the concept
of a WebHook. I tend to like to jump into projects and get my hands dirty so I didn’t spend as much time
understanding WebHooks as I should have. After several failed attempts, I finally took the time to really
research WebHooks and how they function.

A WebHook is simply a method of changing the behavior of a web application or web page with custom
callbacks. Callbacks are a significant concept in most applications and especially so in Node.js applications.
To put it simply, callbacks are functions passed to functions that signify the end of a specific task. In Node.
js, callbacks are especially necessary due to the asynchronous nature of Node. This means functions can
execute in parallel. In cases where order matters, it is important to include a callback to indicate the end of a
function. Figure 4-23 illustrates the idea of a callback in Node.

A A , —> A / ~> A outpPut
startExecution ' o .
callback ca.‘mc“ callback f
! / callback

i / . ’
doSomethingAsync — doSomethingElseAsync — moreAsync — evenMoreAsync —

Figure 4-23. Callbacks signifying the end of a function and the start of another function

Since callbacks are a pretty significant topic in event-driven applications and serverless applications
tend to be event-driven, I would recommend researching this topic in further detail if it is not understood.
Ireally liked this article at tutorialspoint: https://www.tutorialspoint.com/nodejs/nodejs_callbacks_
concept.htm. I had a hard time implementing callbacks (I would frequently leave them out when I first
started writing applications in Node), and this tutorial helped me understand their use.

The custom callbacks we will use for our WebHook will be maintained, modified, and managed by
GitHub. For the purpose of this exercise, we are going to use a GitHub-triggered WebHook to gain a better
understanding of how we can utilize WebHooks in our Azure functions and how we can use third-party
sources (GitHub) to configure them.

Create a GitHub WebHook Trigger

In our Azure Functions blade, we are going to create a new function and pick the GitHub WebHook -
JavaScript template provided by the Azure library (Figure 4-24). The starter template for this will provide us
with a function URL and a GitHub secret that we will use to link our GitHub account to our Azure function.

107

https://www.tutorialspoint.com/nodejs/nodejs_callbacks_concept.htm
https://www.tutorialspoint.com/nodejs/nodejs_callbacks_concept.htm

CHAPTER 4 © AZURE

€ C @ Secure 5/ [portal azure.com

it! Apps yy Workoay caploch ing Lockar & Developer - Inteem..

@ Function Apps - Fun

n Apps - Functions

ACkud Gury [Linkedin

AWS A1 Blog () Gitbub Y FlightStats Develep.. @ Alexa) Coke-Echo - Gitlab [Prepesal Tracker -

Choose a template below or go to the quickstart

- Al subscripions
Laguage: A1 Scenane

£ Purction Agps

Core

WSRO roGiatst

GitHub Webhook - JnvaScript

A JaSeript function that wil
e run whenever |t receves &
Githiub webhook request

ManualTrigger - MevaScript

A Jevascripe funcion that is
triggered manually via the

v ¢F baginnegServeress o» Service Bus togic
o
* I= Funcioes +
-]
v f rmpggenst
§ GRHub Webhook - Fi
b integrte
- An F# function that wil b
= run whenever It receives
"
. Makoe Gitriud wethook request
- Q Monitoe
L] 3= Prosies (preview) +
& 1= Sots (preview) +
ManuaTrigger - F#
- A0 FO function that is
Enpgeres FarUBly vl the
Name your function
[
-
. [o=]
o]

WEDROOH Teguatst

WEBhOO0K feguest

ametens -
(=]

A C# function that will be run

whenever It receives an MTTP

roquest

JavaSerige

A LvaiScript function that will

bet run whenever i neosves
an HTTP request

Figure 4-24. Select the GitHub WebHook Template from the Azure library

£ D0

WEBNOOK Fegquest

MarwalTrigges - CF
A CF function that &
triggered marusily via the
portal "Run” button

By clicking the function URL and the GitHub Secret, we can collect the information needed to configure
the WebHook in GitHub. As it is, the function is triggered by an action, to be decided, that is coming from our
GitHub account. I am using my personal GitHub account to trigger this function (Figure 4-25). If you do not
have an account, go ahead and sign up for a free one at http://www.github.com. If you do not already have
arepository, feel free to fork mine at https://github.com/mgstigler/Serverless/tree/master/Azure/

azure-service.

108

http://www.github.com/
https://github.com/mgstigler/Serverless/tree/master/Azure/azure-service
https://github.com/mgstigler/Serverless/tree/master/Azure/azure-service

CHAPTER 4 © AZURE

« C' @ GitHub, Ine. [US] httgs://github.com/mgstiglerServerless/sottings/hooks/new Y&« OO0 ¢

3! Apos wy Workday ceptech B Leaming Locker & Developer - Inteem_ ACloud Gury [Linkedin AWS Al Blog () GitHub ¢ FlightStats Develop.. @ Alexa) Coke-Echa - Gittab [Proposal Tracker -

magstigler | Serverless @ Unwatch= 1 *Stw 0 YFerk 0
Code Issues O Pull requests 0 Projects 0 Wiki £ Settings Insights =

Cptions Webhooks [Add webhook

Collaborators We'll send a POST request to the URL below with details of am cribed events. You can also specify
which dat at you'd ke to receive [JSON, x-www-lors-ur , etc). More information can be

Branches found in our developer documentation

Webhooks
Payload URL *

Integrations & services
Dopioy koys
Content type

applicationjx-www-form-urlencoded &

Secret

Which events would you like 1o trigger this webhook?
0 Just the push event,

Send me everything.

Let me select individual events

B Active
We will deliver event details when this hook is triggered

Figure 4-25. Paste the URL and Secret in your Github WebHooks settings

If you navigate to the settings of your repo, you will see a WebHooks tab where you can paste your
Payload URL and Secret. Leave the content type as application/x-www-form-urlencoded. You can specify
which events you would like to trigger the WebHook, from the following list:

e Commit comment
e (reate

e Deployment

e Fork

e Gollum

e Issue comment
e Issues

e Label

e Member

e Milestone

e Pagebuild

e Project

e Projectcard

e Project column

109

CHAPTER 4 © AZURE

e Public

e Pullrequest
e Push

e Release

e Repository
e Status

e Teamadd

e Watch

I chose a push event for my WebHook, but feel free to experiment with anything you wish. After setting
up this configuration, I simply made a change to my repo and pushed it to my master branch. I could see the
effect of the WebHook trigger by looking at the logs for my function in the Azure portal (Figure 4-26).

€« C @ Secure hitps://portal.azure.com * 00

5 Apos iy Workday captech B L ACioud Guru [Linkedin) AWS Al Blog) GitHub Y FlightStats Develop.. @ Alexa) Coks-Echa - Gitlab [Proposal Tracker -..

ring Lockee & Developer - Interm.

<> Get furction URL </'> Get GRHub secret View Mles Tost »

Whouse @ Ces FiCopylogs o Colapse v

POST

Query

Thane are 10 QUErY paameters
+ Add parsmeter

Headers
Thave ane 1o b
+ Add header

Riogquost Body
P
=comment": {
“pody™: "This is 3 comsent on a Gi
}
5}

Figure 4-26. The logs shows the Webhook trigger and execution

My function’s body simply writes the request to the logs. You can see everything about the push to
my repo, including the committer, timestamp, and what I changed. This may not be so helpful right now,
but you can see how WebHooks could be used to set up GitHub apps that subscribe to various events on
GitHub. These applications can be used to update an issue tracker, trigger continuous integration builds,
and even deploy to different environments. This example wraps up our GitHub WebHook example. If you are
interested in learning more, I found this to be a good resource: https://developer.github.com/webhooks/.

110

https://developer.github.com/webhooks/

CHAPTER 4 * AZURE

Build Upon Our Hello World API Trigger

To build on our HTTP trigger, we are going to create a notification service that utilizes Twilio and the Hello
World API trigger, as well as Output bindings. I'm going to make this service fun and say it will be a food
delivery notification service, but you can make it whatever you like. To create this, we are going to go back to
our Hello World function and change the HTTP request from “any” to POST. I like to separate my API calls
into different functions. Since the goal of delivering a serverless solution is fast, event-oriented design, we
will stick to this approach. To begin, we will reconfigure our function so navigate back to your Hello World.
Do the following to reconfigure:

e InIntegrate, navigate to Triggers. Change your allowed methods to Selected Methods
and choose the POST method. I set my route template to be orders/. Feel free to do
the same.

e In Outputs, click Add new Output and choose Twilio from the available outputs.

e For Message Parameter Name, choose to use the function return value (you can
also set your own parameter name if you wish

o Ileft the Twilio Settings as TwilioAuthToken and TwilioAccountSid.

e Talso left the rest of the parameters blank so I can configure them in my
function.

We are set up in our Azure portal, but now we need a Twilio account and the information associated
with that account. To get this information, go to https://www.twilio.com/try-twilio and sign up for free.
Once you do this, you will reach the Twilio landing page (Figure 4-27), which gives you your Auth Token and
Account Sid.

% @ Secure hitps:/fwww.twilic.com)co * D0 i

A Cloud Gura [Linkedin AWS Al Blog () Gitblub 7 FlightStats Develop.. @ Aleza My Coke-Echa - Gitlab [Proposal Tracker -..

B Apos y Workday captech

Learning Locker & Developer - Interm.

® CONSOLE

Home

Console Dashboard
Dashboard

News & Tips

m;nsnznia;n:)zuu-.2555;

All Twilio Products

(3 Programmable SMS

Build intelligent SMS logic and apps in web applications over local, toll-free, and

short-code numbers globally from one AP

31 Programmable Video

Build in-app voice and vides with cloud infrastructure and powerful SDKs.

%, Programmable Voice

Twilio's voice application stack cormbines the power of advanced call contral,

global connectivity, and RESTiul APIs. it's an all-in-one phone call powerhouse

designed for instant scale, flexibility, and cost-effective communications.

=1 Programmable Chat

Full-featured chat SDKs for mobile and web, Twilio's i05, Android and lavaScript

Figure 4-27. Copy the two tokens from the Twilio Console so we can use them in our function

111

https://www.twilio.com/try-twilio

CHAPTER 4 © AZURE

I'm going to break here for a Twilio plug. Twilio is a unique developer platform for communication.
Developers utilize the Twilio API to add voice, messaging, and video capabilities to their applications. By
doing this, they are able to provide the right communications experience to their customers easily and
cheaply. Twilio operates by providing a software layer that connects and optimizes communication networks
around the world. This is how developers can enable users to reliably call and message anyone anywhere
with little to no cost. Current companies utilizing the Twilio API include Uber, Lyft, and Netflix.

While I am someone who enjoys building my own services within cloud environments, I also highly
suggest looking into public APIs such as Twilio when necessary. The AWS equivalent to using Twilio is SNS,
Simple Notification Service. Both tools can make your life a lot easier and give you a lot more security and
reliability than what you would expect.

After you grab your tokens from Twilio, save them in your Application Settings. I saved mine as
TwilioAuthToken and TwilioAccountSid (Figure 4-28). You can name them whatever you like, but you will
need to configure this in your function outputs.

4

A Cloud Gua [Linkedin AWS Al Blog () Gitub Y FlightStats Develop.. 8 A Iy} Cokn-Echa - Gittab [Proposal Tracker -

Hsee X Discard

Debugging
Femate debugging

FRemote Visual Studio version

App settings
AnureWeblobsDashboard
AzseWstlotastonge
FUNCTIONS,_EXTENSION V.. =
WEBSITE_CONTENTAZUREFL

ENTSHARE

in on the Furction app that cannct be cisabled 2o will rese
r Manage’ node for sach function.

ACTIONS
) Copy
) Cogy

Connection strings

o results

Figure 4-28. Save the Twilio Tokens and Sid in your app environment settings

To be able to use the Twilio integration effectively, we will also need to get an outgoing phone number
from Twilio. They will provide one for free at https://www.twilio.com/console/phone-numbers/incoming.
This is the number you will use to send texts from your function. Store this number and remember it for later.

If you navigate back to our function, we are going to configure the function. json file for the Twilio
output binding. The Twilio output binding has a specific structure that we will follow to be able to
incorporate it in our function. The function. json will provide the following properties:

name: Variable name used in function code for the Twilio SMS text message.

type: Must be set to twilioSms.

112

https://www.twilio.com/console/phone-numbers/incoming

CHAPTER 4 * AZURE

accountSid: This value must be set to the name of an App Setting that holds
your Twilio Account Sid.

authToken: This value must be set to the name of an App Setting that holds your
Twilio authentication token.

to: This value is set to the phone number that the SMS text is sent to.
from: This value is set to the phone number that the SMS text is sent from.
direction: Must be set to out.

body : This value can be used to hard-code the SMS text message if you don’t
need to set it dynamically in the code for your function.

My final function. json file looks like this:

"bindings": [

{
"authLevel": "function",
"type": "httpTrigger",
"direction": "in",
"name": "req",
"route": "orders/",

"methods": [
"post"
]

b

{
"type": "http",
"direction": "out",
"name": "res"

b

{
"type": "twilioSms",
"name": "$return”,
"accountSid": "TwilioAccountSid",
"authToken": "TwilioAuthToken",

"direction": "out"
}
1,
"disabled": false

}

At this point, we should have all of the setup done so we can actually write the function. To start, we will
need to require Twilio so we can use the Twilio client to send the message. From there, we will simply take
the data we are receiving, parse it, and send it in the message. The body of your index. js file should look
something like Listing 4-1.

113

CHAPTER 4 © AZURE

Listing 4-1. Body of the index. js file for our Twilio function

var client = require('twilio')(process.env.TwilioAccountSid, process.env.TwilioAuthToken);

module.exports = function (context, req) {
console.log(req.body.name);
if(req.body.name && req.body.phoneNumber){
client.messages.create({
from: '+18178544390",
to: req.body.phoneNumber,
body: "Hello " + req.body.name + "! Your order of " + req.body.order +
}, function(err, message) {
if(err) {
console.error(err.message);
}
D;

is on the way.'

}

else {
console.error("Please include a request body with a name and a phone number");
}

};

We will also need a package. json file since we are using Node modules. Once we have fleshed this out,
the trickiest part is actually uploading it to Azure. This is where Azure gets a little tricky. You can’t directly
upload entire folders from the console. This means you either have to select all of the files one by one before
uploading, or you use a framework like Serverless to help you upload (my recommendation), or you use
Azure’s online command-line tool. I am going to walk through option three so we get some exposure to this.
In practice, however, I would definitely use Serverless. I am hoping this is something that changes in the
future. The hardest part should not be uploading your project, but it actually is a little exhausting.

Once you have your index, function, and package. json files in your project in the console, navigate
to <functionname>.scm.azurewebsites.net. This is your function’s URL with Kudu. To give a bit of
background, Kudu is a deployment framework that can be triggered by Git. It is actually very similar to Visual
Studio Online. I used VSOnline at my client site and saw a lot of parallels between that and Kudu when I first
started using Kudu. You can check in the code, create a build definition that will build and run the code and
tests, and then proceed to push the content to Azure websites.

Another benefit to Kudu, which we will see, is the ability to have more access to and control over
your code online. One of my biggest frustrations when I first started working with Azure was not having
control over my project. I spent a lot of time looking up solutions to uploading node modules and trying to
physically upload them through the Cloud Shell to no avail. I even emailed a mentor and asked how he was
able to use node modules with Azure functions; his response was that he never was able to and switched to
an entirely different runtime just to avoid the headache.

When I finally found the solution online, it was to use Kudu to interact with your code directly. We are
going to do this now so we have a better understanding of both, how to navigate and access your code in the
cloud and the benefits of Kudu

When you first get to your site, you will just see the dashboard. We will go into the Debug console
(Figure 4-30) to be able to access our code. Navigate to the root of our application with package.json and in
the console, and use npm install to install the NPM packages we need.

114

CHAPTER 4 © AZURE

* @ Secure hitps:beginning sem et

#! apps w workday captech B Learning Locker & Dwveloper - Intesm ACkud Guru [Linkedin AWS A1 Blog () Gitbub A FlightStats Develop.. @ Alexa by Coke-Echo » GitLab [T Proposal Tracker -

.../ HitpTriggerdS1 &+ 4ditems & @ =

Hama Modified Sae
410 - /26 02:50 PM
- T/26/2017, 103652 PM 1KB
-] L &51:13 PM 1KB
L7 T/26/2017, S:10:40 PM 1 K8

A

Usa old console

Microsoft Corporation. ALl rights reserved.

site'wwwroot \HttpTriggerlSls

Figure 4-29. This is what the Kudu dashboard looks like when you navigate to the Debug console

Note If the NPM install doesn’t work, you can directly drag and drop your npm_modules folder into the
Kudu project structure. | have had issues in the past with the NPM install from Kudu.

Once your NPM modules are uploaded, we can navigate back to the dashboard and test our function
using a POST body that we have used before. Mine looks like this:

{

"name": "Maddie",

"order": "Mac 'n Cheese",

"phoneNumber": "ZXXXXXXXXXX"
}

You use the phone number and order to construct your message. I sent the text to myself to test it out
but feel free to pester a friend with your new application. You should receive a text with your message shortly
after testing it. To trigger this function outside of the test environment, you can use Postman or another
resource and ping the function URL.

To trigger a function, you send an HTTP request to a URL that is a combination of the function app URL
and the function name:

https://{function app name}.azurewebsites.net/api/{function name}

115

CHAPTER 4 © AZURE

If you specify a method, your URL doesn’t need to reference the specific function. So our actual function
URLis https://beginningserverless.azurewebsites.net/api/orders/.
And voila! You have a simple customizable notification application (Figure 4-30).

ee000 Verizon LTE 3:55 PM & 9 90% .
< €) ®
(817) 854-4390

Sent from your Twilio trial
account - Hello Maddie! Your
order of Mac 'n Cheese is on
the way.

> @

Figure 4-30. Text from Twilio Messaging Application

In the next exercise, we will build a storage triggered function that will connect with this application.

ADD TO YOUR FUNCTION

Exercise: Build off this function to add more methods and Azure Functions proxies, a preview feature
that allows you to forward requests to other resources. You define an HTTP endpoint just like with an
HTTP trigger, but instead of writing code to execute when that endpoint is called, you provide a URL to a
remote implementation. This allows you to compose multiple API sources into a single API surface that
is easy for clients to consume. This is particularly useful if you wish to build your API as microservices.
A proxy can point to any HTTP resource, such as these:

e Azure Functions

e APl apps

116

https://beginningserverless.azurewebsites.net/api/orders/

CHAPTER 4 * AZURE

e Docker containers
e Any other hosted API

To learn more, visit https://docs.microsoft.com/en-us/azure/azure-functions/functions-
proxies.

The Storage Event

For our storage triggered event, we are going to build an application that is triggered by an addition to a
queue. To continue with our food theme, we will build an Order queue that will store orders for delivery as
they come in. When a new order is added to the queue, we will update our queue and create a POST to our
previous function’s URL. We are using a queue in this application because it makes sense in the context of
delivery. However, there are several storage triggers provided by Azure, including these:

e Azure Blob Storage
e Storage Tables

e SQL Tables

e No-SQL Database

Irecommend looking into these other options after our queue demonstration. While the Azure storage
options are similar to those in AWS, there are some differences in the way they are set up and accessed. It
might be a good idea to read back through Chapter 3 and try to implement our application that we created
in AWS in our new Azure environment. That will give you a good benchmark for differences in setup,
development, and deployment.

Azure Queue Storage

Azure Queue storage provides cloud messaging between application components. In designing applications
for scale, application components are often decoupled, so that they can scale independently. Queue storage
delivers asynchronous messaging for communication between application components, whether they are
running in the cloud, on the desktop, on an on-premises server, or on a mobile device. Queue storage also
supports managing asynchronous tasks and building process work flows.

Figure 4-31 is an example provided by Azure to explain the components of a queue. The example it
uses is an image resizing application that is dependent on order. The Queue service contains the following
components:

URL Format: Similar to functions, queues are addressable using the following
URL format:

http://<storage account>/queue.core.windows.net/queue

The following URL addresses the queue in Figure 4-32:
http://myaccount.queue.core.windows.net/images-to-download

Storage Account: All access to Azure Storage is done through a storage account.

Queue: A queue contains a set of messages. All messages must be in a queue.
Note that the queue name must be all lowercase.

Message: A message, in any format, of up to 64 KB. The maximum time that a
message can remain in the queue is 7 days.

117

https://docs.microsoft.com/en-us/azure/azure-functions/functions-proxies
https://docs.microsoft.com/en-us/azure/azure-functions/functions-proxies
http://dx.doi.org/10.1007/978-1-4842-3084-8_3
http://<storage account>/queue.core.windows.net/queue
http://myaccount.queue.core.windows.net/images-to-download

CHAPTER 4 AZURE

Storage Account Queue

images-to-download

myaccount

images-to-resize

Figure 4-31. Illustration of the Queue storage that Microsoft Azure provides

Azure queues are fairly easy to set up and understand so I enjoy working with them. The drawback
to queues is the lack of control with the columns and rows. Rows will leave the queue as soon as they are
executed (this is how a queue works anyway), and you only have one message column, which is the message
being sent. The columns you get from Azure are

e 1Id

e Insertion Time (UTC)
e Expiration Time (UTC)
e Dequeue count

e Size (bytes)

For the purpose of this exercise, we will be able to accomplish all that we need to do using a queue.
However, if you want to add any additional information, you might want to explore using another storage
solution.

Create the Function

We are going to return to the Azure portal to create our storage function. To create our Storage function,
navigate back to the new functions section and select the QueueTrigger - JavaScript template (Figure 4-32).
Leave your storage account connection as is, and change the queue name to whatever makes sense for your
queue. I chose orders because my queue is going to be a collection of order.

118

CHAPTER 4 * AZURE

Secure hitps://portal.azure.com « 00 i

H1 Apos y Workday captech B Learing Locker & Developer - Interma. A Cloud Guru [Linkedin AWS Al Blog) GitHub A FlightStats Develop.. @ Aleza M) Coke-Echa - GitLab [Proposal Tracker -..

Trigger - MvaScrigt BlokTrigger - JavaScrict

EvertHubiTrigoer - Jvascriph

A JavaScrigt funczion that wil A JpaSeript function that wil | | A MnvaScript function that wil
B run on b soeafed be run whenever & biob is be e whenever &n event.
schedufe added 10 a specified contsiner huty recebves & new evert

ServiceBusToocTrigger GitHub Webhook - JavaScript HEpTriggerEhPammetnrs
JavaScript AvaSiript TavaSorign
A JaaScript function that will A JavvaScript function that will

A Rrascrige Runcion that we A Jvascres funcuion that wil e run whenaver it Foceies a B run whenaver | reoeves 3

B FLn whenever 3 meishce Bt run wherver 8 mesage webhook request GitHub webhook request

s added to & specified Service s added to the specified

Bus queue Service Bus ook
Name your function
Sorage
Azure Queue Storage trigger
Queue name @ Storage acoount connection € shew vk
orders ALy et JoDsDashbodte $ ew

Figure 4-32. Create a Queue triggered function in Node.js.

Inamed my function Storage to separate it from the other functions we have already created. Creating
this will give you a stubbed-out queue function that you can test using the test box on the right.

You can create a test message and run it to see that it works. However, we haven’t set up our queue yet,
so we will need to do this. To get started, click on the Documentation tab at the bottom of your integrate
blade (Figure 4-33).

Hint This Documentation tab is actually fairly useful for getting started on any new function. Azure provides
its documentation for the functionality of your trigger and function within each function. This makes it really
accessible and limits the time you would have spent searching through Stack Overflow and Google.

119

CHAPTER 4 © AZURE

€ @ Secure hitps//portal.azune.com ' 00
it Apps Gy Workday captech [Leaming Locksr % Developer - Imerme._ A Cloud Gurn [Linkedin WS Al Blog () GitHub # FlightStats Develop.. @ Alexa by Coke-Echo - Gittab [Proposal Tracker

Triggers o Outputs o
Al subscriptions Anse Quove Sorsge (myQuesiter] o+ Foew Inpt o New Output
S Function Acps
- beginnmgServeress o
v 5= Funcions +

b f Guhew i Azure Queue Storage trigger x deiete

b f reapTiggenst Mesange arsmeter name 0 Queue neme O
v f Soge myQutueRem ordors
¥ Jgrity Storage seount connection O show vaiue
© Manage Arureiet jobsDs bnand 3 new
Q Monitor
w 3= Proses (preview) +
= Documentation
b IS Sots (preview) +

Connecting to your Storage Account
Downlaad Storage expiorer from here: hip //storsgeexplorescom

Cormect using these credentials:

Account Mame: pcieingserversicl

Account Key: @

Connection String: @

You £ Fow view the iblobs, queues and tables mssociated with this storage binding.

Settings for storage queue trigger
Figure 4-33. Get the Account Key and the Connection string from your integration documentation

This Documentation tab contains an Account name, Account Key, and Connections string for your
function. You will use the Account name and key to set a connection between the Queue and the function.
So copy these values and save them. We are going to create our queue using Microsoft Azure Storage
Explorer. You will need to download this tool to be able to use it. We will discuss a little more about Azure
Storage Explorer before jumping into it.

Microsoft Azure Storage Explorer

We will be using the Microsoft Azure Storage Explorer tool to access and manipulate our data. Microsoft
Azure Storage Explorer (in Preview mode currently) is a standalone app from Microsoft that allows
you to work easily with Azure Storage data on Windows, macOS, and Linux. To install this tool, go to
http://storageexplorer.com/ and click the appropriate download package for your machine.

Once Storage Explorer is downloaded, you will need to connect to Azure storage. Click on the third
option provided (Use a Storage Account Name and Key) and provide the credentials that we received from
the portal earlier. Figure 4-34 shows what your storage attachment should look like.

120

http://storageexplorer.com/
http://storageexplorer.com/

CHAPTER 4 * AZURE

Attach External Storage

Figure 4-34. Use the account information to form the connection to our Azure Storage

Click through the rest of the setup, and this will form the connection to your Azure account and your
various Storage capabilities. When the connection is formed, you should see your application listed under
Storage Accounts and should see options for Queues, Blob Containers, File Shares, and Tables.

When I first started work, I was assigned an Azure Machine Learning project that used data from a SQL
Database. One of my first tasks was to host this data in Azure and I did this through SQL Server. It was an
absolute nightmare. This tool is actually very powerful and lets you easily manipulate your data in one spot.
The only thing that is a little hard is that it is an entirely new tool you need locally to access these capabilities.
I'would prefer for this tool to be hosted in Azure but this can be subject to change, seeing as how it is just in
Preview mode now. In the meantime, this is what I recommend using when you are interacting with Azure
storage.

Under Queues, right-click and choose Create a Queue. Give it the same name you gave it in the settings
of your Azure function (“orders”). We can test the template function by clicking Add Message and adding a
message to our queue. This should trigger our function; then remove the message from our queue. Figure 4-35
illustrates what our queue should look like.

121

CHAPTER 4 © AZURE

Collame AN Fotosh A
423 Mossage Al
4 Cuick Azoass
+ @ (Local and Altached)
+ [Sterage Acoounts.
v [(SAS-Attached Services)
« [E] boginningsenvebic! (Exiemal)

b Bt Cortanan
5 File Shares
[T Ousves
» [Tavies
Trars s 0 s i ha e
Actors Propertes Acwtes
L P Roginringaor vorSie | QUi com windy
Tyoe Cusus

Figure 4-35. We can test the function by adding an item to our queue

For my test message, [just provided the queue with a text and sent it on its way (Figure 4-36).

Add Message

Messags i

oms %

8 Encoos mossage body i Dasedd

Figure 4-36. Add a message to your queue
122

CHAPTER 4 * AZURE

We can go back to our Azure portal and check the logs for our function to make sure our message was
sent and received. If it was successful, you should see a message like the one shown in Figure 4-37.

€« C @ Secure hitps://portal.azure.com * Do i

i Apos y Waorkday captech arming Locker & Developer - Interme.. A Cloud Guru [Linkedin 3 AWS Al Blog) GitHub 7 FlightStats Develop.. @ Alaxa) Coks-Echa - Gitlab [Proposal Tracker -...

e Rnctio o N v maddie stigler@grmail...
RRctoeie g . > 4 MADOISTIGLINGMAR, DR

n Apps - Functions

All subscriptions

Logs WPase @ Cear ©Copylogs o Colapse Regquest

= Funtion Aggs

Outpas

» Fun

Figure 4-37. Success log from our Queue test

If we have confirmed that our queue is connected to Azure and is triggering our function, we can move
on to complete our index, function, and package. json files.

Finish Our Function

To write our function, we are going to use our HTTP POST endpoint from the previous exercise to post a
request order to it. If you remember, this URL was:

https://beginningserverless.azurewebsites.net/api/orders/

We will use the Node request package to service this request. To do this, we will have to create another
package. json file and include it in our dependencies. My package. json looks like this:

{

"name": "azure-nodejs",

"version": "1.0.0",

"description": "Azure Functions for Storage Trigger",
"main": "handler.js",

"keywords": [

"azure",

"serverless"

1,

123

https://beginningserverless.azurewebsites.net/api/orders/

CHAPTER 4 © AZURE

"dependencies": {
"request":""2.81.0"
}
}

We need to upload this file to our project in our Azure application. Then we will need to return to our
Kudu dashboard and do an NPM install inside our project folder to make sure the right node modules are
included to run our application. Once this is complete, we can go ahead and finish out our function.

The Request node module is designed to be the simplest way possible to make http calls. It supports
HTTPS and follows redirects by default. The first argument can be either a URL or an options object. The
only required option is uri; all others are optional.

e uri||url: Fully qualified URI or a parsed URL object.

e baseUrl: fully qualified uri string used as the base url. Most useful with request.
defaults, for example when you want to do many requests to the same domain. If
baseUrlis https://example.com/api/, then requesting /end/point?test=true will
fetch https://example.com/api/end/point?test=true. When baseUrl is given, uri
must also be a string.

e method: HTTP method (default: GET)
e headers : HTTP headers (default: {})

For more information on the Request module, go to https://www.npmjs.com/package/request.

Following the described request parameters, we will create an options JSON with our own values filled
in and we will set the JSON variable to be our incoming myQueueltem. Listing 4-2 shows a built-out function
for handling Queue requests and sending them to our next function.

Listing 4-2. A function that takes in a queue item and submits it to our HTTP function

var request=require('request');

module.exports = function (context, myQueueItem) {
context.log('JavaScript queue trigger function processed work item', myQueueItem);
if(myQueueItem.name && myQueueItem.order 8& myQueueItem.phoneNumber) {

var options = {
url: 'https://beginningServerless.azurewebsites.net/api/orders/"',
method: 'POST',
headers: {
'Content-Type': 'application/json'

§;on: myQueueItem
};
request(options, function(err, res, body) {
if (res &% (res.statusCode === 200 || res.statusCode === 201)) {
console.log(body);
}
D;

}

124

https://example.com/api/
https://example.com/api/end/point?test=true
https://www.npmjs.com/package/request

CHAPTER 4 * AZURE

else (
console.log("Nothing to process")

)

context.done();

};

Once we deploy this function, we can test it by once again creating a message in our queue and
submitting it. If all is set up correctly, we should be able to go into our logs for both the Storage function and
the HTTP function and see our message come through there. You should also continue receiving texts for
each message you create.

Tip If you are having trouble seeing your changes, make sure your endpoint is correct and that your queue
name is the same in Storage Explorer and in Azure. Configuration is more likely your issue than something in
your code, and these are the two places where the configuration really matters.

Another thing to keep in mind is that the way we set up our HTTP function was to receive a body in a
POST request with a specific structure. The structure was:

{ n " nn
name": "",
"order": ",
"phoneNumber™: "ZXXXXXXXXXX"
}

So for our HTTP function to be able to handle our incoming queue message properly, one of two things
must happen.

1. We must structure all queue messages as if they were JSON objects and make
sure each item contains a name, order, and phone number.

2. We must rework our HTTP function to accept a message as a string and send that
message directly.

I chose to structure my queue message as a JSON value to test and make sure the message makes it all
the way through the flow. After adding the initial message, I first went into my storage function and checked
the logs to make sure it received and sent the message. Figure 4-38 shows my results.

125

CHAPTER 4 © AZURE

< @ Secure h portal.azure.com « 00

A Cloud Gura [Linkedin AWS Al Blog) GitHub A7 FlightStats Develop.. @ Alexa M) Coke-Echa - GitLab [Proposal Tracker -..

arming Locker & Developer - Interme..

T Apos w Workday captech

Function Apps stigler@gema

tion Apps - Functions

O "beginningSeneries”
All subscriptions
= Function Ages

egServeriss

b f GRhubWebhookis!

» f rapTiggens

son: myfueseitem

v f Stoge

§ letegrate

@ Manage
Q) Monitor M
w §= Prowdes (preview) +

b 5 Sots (previen) +

WPsuse @ Cear O)Copylogs S Dpand v

ted (Success, IdebBefbbc-A2ef-4804-BeBd-057174adched, Dux > Fan

Figure 4-38. The storage function has been triggered by the message in our queue

After confirming that the message made it to step one, I looked at our HTTP function logs to make sure
it made it through step two as well (Figure 4-39).

< @ Secure hitps://portal.azure.com o

i Apos Workday captech [Learning Locker & Dewelaper - Interme. A Cloud Guru [Linkedin AWS Al Blog () Gitbub A FlightStats Develop.. @ Alexa) Coke-Echo - GitLab [Propossl Tracker -

maddie stigler@grmail...
MADDILETIGLERGMAR (DEFA

Fu

B *beginningServeriess® ®

View files Test >
Al subscriptions
Wrose @ Ces [Copylogs o Colapse v +Add TUpioad @ Delete
= Function Aps
> Storge
nodde_mocules
Y function. json
» [GhubiWebhooklS1
Y index 35
w f HapTriggensi
~EBER=BI1S-bbec)islMeT, Dur " package. json

& Manage
Q, Monitor
v [Somge
4 Integrate
© Manage

Q Monitor

w i= Prodes (preview) +

Sots (preview) -

Figure 4-39. HTTP function logs show the message received and sent via text
126

CHAPTER 4 = AZURE

Shortly afterward, I received a text message with the message I had added to the queue. As you can
see, it is pretty quick and easy to set up a storage triggered function in Azure, especially using the Storage
explorer. The food delivery notification system is one application of the storage as a trigger, but there are

many more.

ADD TO YOUR FUNCTION

For this exercise, we are going to restructure our application process flow. The HTTP request will now
be step one and the storage event function will be step two. We will continue to use POST requests to
our HTTP function, but instead of sending a text, we will update our queue with the parsed message
we want to send. When this message is added to the queue, it will trigger the second Lambda function
that will send the text to the customer. This will give you exposure to manipulating queue data in Node
in Azure functions. If you wanted to take it a step further, you could even look into Blob storage and add
images to the storage to send those to the user as well. Azure’s blob storage is very similar to AWS S3,
which we used in the last chapter. Common uses of Blob storage include these:

Serving images or documents directly to a browser

Storing files for distributed access

Streaming video and audio

Storing data for backup and restore, disaster recovery, and archiving

Storing data for analysis by an on-premises or Azure-hosted service

The following diagram should give you a better understanding for how Blob storage works in Azure.

Account Container Blob

IMG001.JPG

IMGOOZ JPG

plctures

To learn more, visit https://docs.microsoft.com/en-us/azure/storage/storage-nodejs-how-to-
use-blob-storage.

127

https://docs.microsoft.com/en-us/azure/storage/storage-nodejs-how-to-use-blob-storage
https://docs.microsoft.com/en-us/azure/storage/storage-nodejs-how-to-use-blob-storage

CHAPTER 4 * AZURE

Conclusion

In this chapter we explored HTTP triggers and storage triggers in Azure Functions. We looked at some
differences between developing in Azure and developing in AWS and discovered a lot of differences in the
process of creating functions. We looked into WebHooks and HTTP requests for API triggers and saw how we
could use either in daily applications. At this point, you should feel comfortable writing node functions and
deploying them in either AWS or Azure. You should have a better understanding of the Azure configurations
(and locations of these configurations) in comparison to AWS, and you should have a clearer idea of why you
would prefer one vendor over another. In the next chapter, we will continue building Serverless applications.
We will look at Google Cloud and build out a couple of Cloud functions, explore the UI, and continue to
analyze differences in vendors.

128

CHAPTER 5

Google Cloud

In this chapter, we will use Google Cloud Platform to develop serverless applications and explore differences
between Google as a cloud provider and Azure and Amazon as cloud providers. To create these applications,
we will use Cloud functions, HTTP requests, Google Cloud Storage bucket, and Cloud Pub/Sub topics.

We will also explore different use cases for HTTP and storage triggered functions so we get a better
understanding of the breadth and depth of serverless applications. By the end of this chapter, we will have
three serverless applications and experience with several Google Cloud services.

Note At this book’s publication, Google Cloud is currently in a Beta release of Cloud Functions. The APIs
might be changed in backward-incompatible ways and are not subject to any SLA or deprecation policies. Keep
this in mind while we go through these exercises.

Explore the Ul

We are going to start investigating the Google Cloud UI before developing our functions. I would
recommend some self-exploration beyond this section to really familiarize yourself with how Google Cloud
works. Azure and AWS have many differences, but to me there was definitely more of a learning curve with
Google. I think a lot of this had to do with my comfort with AWS and the new concepts introduced in Google
Cloud, so we will be sure to explore these differences as we go along. To get started, you will need a Google
account to access the Google Cloud UL After signing into the console at https://console.cloud.google.
com/, your dashboard will display a list of Google services separated by functionality (very similar to AWS
and Azure). Figure 5-1 gives you an idea of all of the services Google Cloud provides.

© Maddie Stigler 2018 129
M. Stigler, Beginning Serverless Computing, https://doi.org/10.1007/978-1-4842-3084-8_5

https://doi.org/10.1007/978-1-4842-3084-8_5
https://console.cloud.google.com/
https://console.cloud.google.com/

CHAPTER 5 GOOGLE CLOUD

L C @ Secure hitps//consohe.cloud.google.comhome/dashboard?project =loyal-curve- 1078238 mthuser=D8_ga=1.205443408,

! Apps (4 Workday captech Y Learning Locker & Developer - Imtesme.. A Cloud Guru () Linkedin % AWS A1 Blog) GitHub ' FlightStats Develop.. B Alexa) Coke-Echo - Gittab [Proposal Tracker -

FE 75U PV 350000 INCROI NG £/ GRYE MTL I YOUF 1ree B

Google Cloud Platform 3e helloword -

157 2480093,1601541012

« 00

IEENERY

Home

Cloud Launcher

H
& Billing
W1 API Manager
'i‘ Support
B 1AM & Admin

-
NETWORKING
II VPCnetwork &
iTa Metwork Services &
&} VPN

=
COMPUTE
@ AppEngine
(] Compute Engine e
@ Container Engine

&

[+) Cloud Functions

DASHBOARD

ACTIVITY

Project info
Project name

hello workd

Project ID
loyalcurve- 107623
Project numbes
TE48TIZ1347

Go to project settings

Resources
Compute Engine
You do not have permission to see this

information

Cloud Siorage

1 bucket

Trace

Mo trace data from the past 7 days

Get starnted with Stackdriver Trace

{ Compute Engine
cPu) -

These is no Gata for This chart

=» Gotothe Compute Enging dashboard

W1 APls

Aequests (requests/sec)

CUSTOMIZE
& Google Cloud Platform
stalus
Al services normal
=3 Go o Cloud stetus dashboard
= Billing
Estimated charges 50.00

Fot the billing period Jul 1 = 31, 2017

=3 View detailed charpes

() Error Reporting
No sign of any errors. Have you set up Emor

Repocting?

= Learn how 1o st up Error Reporting

I News

Gues1 post: How Seenit uses Google Cloud
Platform and Couchbase 1o pawer ouf video
callaboration platfarm

Figure 5-1. Google Cloud Platform offers many services ranging from compute services to networking services
to storage. We will be exploring functions, API manager, storage, and IAM.

At this point, you have learned a lot of different terms for the same concepts in Amazon and Azure.
Table 5-1 provides a concepts map for the three platforms to keep the terminology straight throughout

this chapter.

Table 5-1. Cloud Provider Concepts Table

Concept AWS Term Azure Term Google Term

Data Center Region Region Region

Abstracted Data Center ~ Availability Zone Availability Zones Zone

Edge Caching CloudFront POP (multiple services)

Compute: IaaS EC2 Virtual Machines Google Compute Engine

Compute: PaaS Elastic Beanstalk App Service, Cloud Google App Engine
Services

Compute: Containers

Network: Load Balancing

EC2 Container Service

Elastic Load Balancer

Azure Container Service,
Service Fabric

Load Balancer

Google Container Engine

Load Balancing

Network: Peering Direct Connect ExpressRoute Cloud Interconnect
Network: DNS Route 53 DNS Cloud DNS
Storage: Object Storage S3 Blob Cloud Storage
Storage: File Storage Elastic File System File Storage Avere
(continued)

130

CHAPTER 5 © GOOGLE CLOUD

Table 5-1. (continued)

Concept AWS Term Azure Term Google Term
Database: RDBMS RDS SQL Database Cloud SQL
Database: NoSQL DynamoDB Table Storage Cloud Datastore,

Bigtable
Messaging SNS Service Bus Cloud Pub/Sub
Navigation

The dashboard for Google Cloud is pretty straightforward and very accessible. As in Azure, you are able to
configure and customize the layout of your dashboard to what works for you. Also similarly to Azure, Google
Cloud provides users with a Google Cloud Shell. This can be found in the top right of the blue bar across
your dashboard. Google Cloud Shell is an environment for managing resources hosted on Google Cloud
Platform.

The shell already has the Cloud SDK up and ready to go. I like this because it’s less set up on your local
machine and makes it all very accessible through the portal. To test this out, you can open the Cloud Shell
and type in:

gcloud -version

This will give you the list of installed Cloud SDK components and their versions (Figure 5-2).

@ Secure hitps:|/console.cloud google.com|home)dashboard?pn 2 ve- 107623 Bauthu: * QO :
! Apps yy Workday captech B Learning Locker & Dwweloper - Intésme.. A Cloud Guru [0] Linkedin) AWS Al Blog () GitMub 7 FlightStats Develop.. 8 Alaxa) Coke-Echa - Gittab [Proposal Tracker -_. .
ik DESMISS
= Google Cloud Platform 3¢ helloword ~
DASHBOARD ACTIVITY # CUSTOMIZE
:. Project info {## Compute Engine & Google Cloud Platform status
Project name RS - AN sorvices nonmal
hello worid
Prcfeca 1h > GotoCloud status dashboard
toyal-curve- 107623

Praject number

Figure 5-2. The Cloud Shell comes with Cloud SDK up and running, along with several components

131

CHAPTER 5 © GOOGLE CLOUD

In the dashboard, we have access to our project info, resources used, billing, and error reporting. The
specific project you're in is displayed on the top left of the blue bar. Right now, I am in the Hello World
project I created for this tutorial. To create a new project, you can click the drop-down arrow on the blue bar
and a project modal will pop up. If you click the plus sign, you can create a new project and add it to your
dashboard. Feel free to do this for the Hello World function now.

Any Cloud Platform resources that you allocate and use must belong to a project. I like to think of
projects as the organizing entity for what I'm building. A project is made up of the settings, permissions, and
other metadata that describe your applications. Resources within a single project can work together easily;
for example by communicating through an internal network, subject to the region-and-zone rules. The
resources that each project contains remain separate across project boundaries; you can only interconnect
them through an external network connection.

By clicking the set of dots next to your profile picture, you have access to a list of other options including
Project settings for the given project. When you click this, you see a project ID and a project number. These
are the two ways to identify your project. As you work with Cloud Platform, you'll use these identifiers in
certain command lines and API calls.

The project number is automatically assigned when you create a project.

The project ID is a unique identifier for a project. When you first create a project, you can accept the
default generated project ID or create your own. A project ID cannot be changed after the project is created,
so if you are creating a new project, be sure to choose an ID that will work for the lifetime of the project.

In the same panel, you are able to access IAM permissions and roles for the project. This is a feature
that Azure and Google share that AWS does differently. In both Azure and Google, services and resources are
split up by project from the console down. In AWS, you can do this but it is not something that is provided
out of the box. This means that while navigating through AWS, you would see resources for different projects
in the same space and would have to specify IAM policies for specific projects. Google and Azure enforce
this separation of projects. Any change you make to Google or Azure policies for a project apply to the entire
project.

Pricing
Pricing and billing for Google Cloud can be accessed through the portal in the Billing tile. The Billing

dashboard gives you access to an overview of your billing statements, budgets and alerts, transactions,
exports, payment settings, and billing configurations. Figure 5-3 gives an overview of the Billing portal.

132

€ C @ Secure hitps:/jconsohe.cloud. google.com/billinglO0FC 1 2-64DATE-BESCH Pproject=loyal-curve- 107623
! Apps y Workday ceptech B Leaming Locker & Developer - Interme..

§B vouhave $300.00 in credit and 269 days beft in your free trial

Google Cloud Platform

2 bello world ~

ACloud Guru [B) Linkedin £ AWS Al Blog) Gittub /7 FlightStats Develop...

CHAPTER 5 GOOGLE CLOUD

* Q0 ¢

@ Mlexa My Coke-Echo - Gittab [Proposal Tracker - »

&3 Billing

Overdew

Budgets & slerts

Transactions
& Billing export
A Payment settings

% Paymert method

Overview My Billing Accoumt =
Billing sccount overview Payment overview
Bifing sccount I DOFCIZ-44DA75-BESCTT
Credits
Credits remaining

Out of $300.00

Projects linked to this billing account
Projectname Project 10
Mlowekd loyalcuve 107623

RENAME BILLING ACCOUNT

269
Days remaining

Ends Ape 27, 2018

O CLOSE BILLING ACCOUNT HIDE INFO PANEL

My Billing Account

PERMISSIONS

‘Select o role

Search mewbers.

Filter by namee or role

Bilting Account Administrator (1 member)

Muthorized to see and marage all asoects of biling accounts.

Figure 5-3. The Billing panel gives you an overview of your billing statements as well as access to permissions
to your billing account

You can create budgets attached to specific projects with a specified amount for various alerts. These
alerts will email you when the minimum value submitted has been reached. Google also provides a pricing
calculator that is intuitive and easy to use. The other providers we have covered provide this as well.

If you're just working on independent projects, the cost calculator probably matters less to you but if
you are ever doing any Cloud architecture and development for someone else, the cost calculator becomes
pretty important. Google’s calculator lets you pick the services you think you will be using and define all of
the specifications for each of them so you will get a more accurate price calculation back. Figure 5-4 shows
an estimate for the Hello World cloud function we will be creating together.

133

CHAPTER 5 GOOGLE CLOUD

L C & Secure hitps://cloud google.com/products/calculator #d=873bebe-5401-4132-ackb-000 148417122 00

! apos gy Workday captech B Learning Locker & Dwweloper - interme.. A Cloud Guru [Linkedin i AWS Ml Blog) Gitub A7 8 mexa Echa - GitLab [Proposal Tracker - -
{ , Google Cloud Platform Q, Search CONSOLE § .
Why Google Products Launcher Pricing Customers Documentation Suppornt Partners CONTACT SALES

MACHRE

000€Q000H(I

cLove oLP AR e

L ENDRORTE FUMCTIONS

Cloud Functions
hello world s ®
invecations. 100
: ? Gf-seconds: 0013 per month
Memory: 178M8 CPL: 200MHE - &

GHz-seconds 002 per month
Netweorking 0 08 pa month
s0.00

A portion of yout estimate fs within the Cloud Functicas free
thet. Piease Chei harg for more detail

Total Estimated Cost: $0.00 per 1 month

m AdjssExtiste Tenelrame

Figure 5-4. The Cost calculator lets you select the service, information, and add to your current estimate for
amount of money per month

The pricing for Cloud Functions is still incredibly cheap. Cloud Functions are priced according to
how long your function runs, how many times it's invoked, and how many resources you provision for the
function. If your function makes an outbound network request, there are also additional data transfer fees.
Cloud Functions includes a perpetual free tier to allow you to experiment with the platform at no charge.

Cloud Functions

Cloud Functions can be accessed in the left panel under Compute and Functions. Google also gives you a
pinning option, so you can keep your access to Functions at the top of your screen no matter where you are
in the console. I do this for easy access. The Cloud Functions dashboard lets you view your current active
functions, region, trigger, memory allocation per function, and the last deployment. This is also where you
would go to create or delete a function. Figure 5-5 gives an overview of the Google Cloud dashboard.

© C @ Secure htps://console.cloud.google.com/functions listTproject=loyal-curve- 10762 3Bauthuser=0 * 00 :
! Apps y Workday ceptech B Leamning Locker & Developer - Interme.. A Cloud Guru [) Linkedin 3 AWS A1 Blog) GitHub 7 FlightStats Develop.. @ Alexa Mg} Coke-Echo - GitLab [Proposal Tracker -_. "
'_' Wou harve $300.00 in credit and 270 days left in your free tnal. DESMISS

Google Cloud Platform 3+ helowordd ~

[---} Cloud Functicns Overview CAEATE FUNCTION C REFRESH
d Columas =
Name ~ Rogen. Trigger Memcry alacated Unecuted Function Lant Seployed
@ belloword uscestalt HTTPuigger 128 MB Jur—— BT, TS6AM f

Figure 5-5. The Cloud functions dashboard shows your active functions and their metrics

134

CHAPTER 5 © GOOGLE CLOUD

We will walk through creating a function when we begin our Hello World application, but for now,
I am going to give a quick background on more specific differences in Google Cloud’s functions that Google
Cloud specifies in their documentation.

Security IAM

Google Cloud Identity and Access Management (Cloud IAM) enables you to create and manage permissions
for Google Cloud Platform resources. Cloud IAM unifies access control for Cloud Platform services into a
single system and presents a consistent set of operations.

You can set access control using roles at the project level. Assign a role to a project member or service
account to determine the level of access to your Google Cloud Platform project and its resources. By default,
all Google Cloud Platform projects come with a single user: the original project creator. No other users
have access to the project and or its functions, until a user is added as a project team member. Figure 5-6
demonstrates the IAM flow associated with Google Cloud.

compute.instanceAdmin

» storage.objectAdmin
‘ » appengine.appAdmin

+ logging.viewer
Roles » pubsub.publisher

4 -

IAM Policy ‘

Identities

Google Account itest@gmail.com

Service Account (test@project_id.iam.gserviceaccount.com,

Google Group (restég

MO OO®

Google Apps Domain (test

Figure 5-6. The IAM service attaches a policy to roles and identities to provide secure access

IAM Console

The IAM console (Figure 5-7) is found under the list of products and services in the left Dashboard blade.
The console gives you a dashboard with your current IAM permissions for your project, identity, quotas,
service accounts, labels, GCP privacy, settings, encryption keys, proxies, and roles.

135

CHAPTER 5 © GOOGLE CLOUD

“ C @ Secure hitps://console.cloud google.com/iam-adminfiam/project?project s loyal-curve- 107623 « D0 :
1 Apos w Workday captoch ™ Leaming Locknr # Developer - IMgeme.. A Cloud Gunu [3) Linkedin 0 AWS A1 Blog () Gitbiub 0 FlightStats Devolop.. @ Alexa ! Coko-Echo - Gitlab [Preposal Tracker -_.

‘viow barve $300.00 In coedit and 269 days feft in your free tria DISMISS @

8

Google Cloud Platform 3+ bellowerd ~

O 1AM & Admin 1AM +2 ADD
e Permissions for project *hello warld™
6 identity
@ Ouotas
] Service accounts
¥ Labeis
@ GCP Privacy & Securhty
Troe Mambers -~ Rele{s)
& Senings ®5 Compute Engine defaul service sccoumt Eator - ®
744871227347 compute@develcper gaerviceaccount.com
@ Encryption keys
= Google APIs service sccount Multiple +
£ Identity-Aware Praxy TOAR7 22t AT ECIoudbervices. GRervicesicount ¢om
= Roles L] App Engine defaut Edtor ~ W
Ieysl etve 10762 IE BN ervicesteine com
L MasdeSighe owoer = W
‘maddie stigler@gmail com
= Google APIS service sccount Editer = &

service- 764871221 347 comtainermegistry lam grervicescoount com

[3 Manage Resources

Figure 5-7. The IAM dashboard gives you an overview of all of your IAM resources along with five security
steps you are recommended to complete

The dashboard lists the permissions for the particular project you are in at the moment. These
permissions affect the entire Hello World project and all of its resources. To grant permissions, add a
member and then select a role for them. Members can be people, domains, groups, or service accounts.

Note At this book’s publication, some roles are in Beta development and might be changed or deprecated
in the future. These are also basic methodologies that probably won’t change. You should be comfortable using
roles and services currently in Beta.

Roles

With Cloud IAM, a Cloud API method requires that the identity making the API request has the appropriate
permissions to use the resource. You can grant permissions by granting roles to a user, a group, or a service
account. There are three types of roles that we will look at: primitive, predefined, and custom roles.

Primitive roles are roles that existed prior to Cloud IAM. Owner, Editor, and Viewer will continue to work
as they did before. These roles are concentric; that is, the Owner role includes the permissions in the Editor
role, and the Editor role includes the permissions in the Viewer role. Primitive roles can be assigned at the
project level.

Cloud IAM provides additional predefined roles that give granular access to specific Google Cloud
Platform resources and prevent unwanted access to other resources. You can grant multiple roles to the
same user. For example, the same user can have Network Admin and Log Viewer roles on a project and also
have a Publisher role for a Pub/Sub topic within that project.

136

CHAPTER 5 GOOGLE CLOUD

In addition to predefined roles, Cloud IAM also provides the ability to create customized roles. You can
create a custom IAM role with one or more permissions and then grant that custom role to users who are
part of your organization (Figure 5-8).

€ 2 C & Secure hips:/console.cloud.googie.com/iam-adminiroles/projectTproject=loyal-curve- 107623 * 00 i
H1 Apos y Workday captech B Learning Locker & Developer - Interme.. A Cloud Guru [3) Linkedin) AWS Al Blog () Gitbiub A FlightStats Develop.. @ Mlexa M) Coke-Echo - Gitlsb [Proposal Tracker -.. -

Google Cloud Platform 2+ helowerd -

e 1AM & Admin Roles €y + CREATEROLE Iy CREATE ROLE FROM SELECTION [% App Engine Admin
b i Roles for *hello world” project rcies. appengine appALmin
O identity A aohe oo L « General Avalability
Leasm more Description
B Quons i L .
A role i3 2 group of permissions 1t you Can B38XgN to members. You can create Full management of App Engine a0ps (but not storage)
o Service sccounts o role and add permriasions 10 1t, of copy an xisting role and s . 23 combined 2
permissions. Creste custom robes by selecting one or mone rmles and create new Bppengine Bpplications disatle
role from selecton. “
@ Labels appengine applications get
@ GCP Privacy & Securty Fiter by raena s per ABFoletypes = Asy slata =
aopengine Eatances get
% Settiage e b o sppengine Fatances it
© Annctatce Datshub Erabied § Bppengine instances update
9 Encryption keya appengine operations carcel
~d App Engire Admin App Engine Erabled § appengine operations delete
B identity-Aware Prosy sopengine openstions pet
App Engine Code Viewsr App Engine Enabied
= Roles

App Engine Deployer App Engine Eratied

o]
@
Lo}
@ App Engine Service Admin Apa Engine Enabled t
sapengine serees it
lo] App Engine Viewsr App Engine Erabied } appengine senvces. update
anpengine versens create
o] Bescon Aftachmaent Editor Prowey Bracen Eratied } appengine vecsions.delete
anpengine versian pet
@ Beacon Astachiment Publisher Proniizy Bescon Eraties b
e Beacon Attachment Viewer Proximiy Beacon Eratied appengine versions.updete
rescurcemanage: profects get
] Beacon Edtor Fraximity Bescon Eratied | resourcermanage: projects list
@ BigQuery Admin Biguery Enabled
(3 Wants Aosonicn <] BigQuery Data Egtor Biguery Erasisd
(o] BigOuery Duta Dwner BigQuery Eraied
L
© Bigtiuery Cata Viewsr Bigumry Erabled

Figure 5-8. The list of available roles through Google Cloud. You can also create a role.

Policies

You can grant roles to users by creating a Cloud IAM policy, which is a collection of statements that define
who has what type of access. A policy is attached to a resource and is used to enforce access control
whenever that resource is accessed.

A Cloud IAM policy is represented by the policy object. A policy consists of a list of bindings. A binding
binds a list of members to a role. The following code snippet shows the structure of a Cloud IAM policy:

{

"bindings": [

{
"role": "roles/owner",
"members": [
"user:maddie@example.com”,
"group:admins@example.com",
"domain:google.com",
"serviceAccount:my-other-app@appspot.gserviceaccount.com",

b

137

CHAPTER 5 © GOOGLE CLOUD

{
"role": "roles/viewer",
"members": ["user:maddie@example.com"]
}
]
}

The last thing to understand about policies is that Google Cloud organizes them hierarchically. This
hierarchy is defined by Organization & Projects & Resources. Figure 5-9 shows an example of a Cloud Platform
resource hierarchy. The Organization node is the root node in the hierarchy, the Projects are the children of the
Organization, and the other Resources are the children of Projects. Each resource has exactly one parent.

example.com

|

=
S
e
Ll
i)
1=
o
g
o

Y v ¥ 3
=
-~
k-
- - - @
example dev example-test example-prod =
' =
} ! ! | | ! 3
o @ 6 06 @
w Compute App Cloud Cloud Compute Cloud
§ Engine Engine Storage Pub/Sub Engine Storage
3 I 1
o |
-4 1
g ¥ v ¥ 1 ¥ v v ¥
)\ oy o (a) (™\ 7 o o
= | (\ (
@}/ s W ® & @ @& @
instance_a service.a bucketa topic_a instance_a instance b bucket b bucket ¢

Figure 5-9. The list of roles available through Google Cloud. You can also create a role.

Your First Code

Now that we have a better understanding of Google Cloud and its capabilities, we can begin creating our
serverless applications using Google Functions. If you already have the project, SDK, Billing, and API set up,
you can proceed to the Hello World section. If not, please take the five minutes to set these things up.

To set up the project, go to the Projects page: https://console.cloud.google.com/project. Create a
new Hello World project in this space. We will also need to enable billing. Take the following steps to do this:

—_

From the projects list, select the project to re-enable billing for.
2. Open the console left side menu and select Billing.

3. Click Link a Billing Account.
4

Click Set Account.

138

https://console.cloud.google.com/project

CHAPTER 5 GOOGLE CLOUD

Next, we want to enable the Cloud Functions API:
1. From the projects list, select a project or create a new one.

2. Ifthe API Manager page isn't already open, open the console left side menu and
select API Manager, and then select Library.

3. Click the Cloud Functions API.
4. Click ENABLE.
You can install the Google Cloud SDK by downloading the correct package from here:

https://cloud.google.com/sdk/docs/

At this point, you should have all of the prerequisites in place to begin developing our serverless functions.

Hello World

We will start by creating a new function in the Cloud Functions console. To get here, navigate to Cloud
Functions from the dashboard. As shown in Figure 5-10, we will create a new function, name it hello-world,
and give it the following properties:

e Name: hello-world

e Region: us-centrall

e Memory Allocated: 128 MB
e Timeout: 60 seconds

e Trigger: HTTP trigger

e Bucket: hello-world

= @ Secure hitps//console.cloud.googhe.com/functio
! Apps iy Workday captech Y Learning Locker & Developer - Imesme.. A Cloud Guru [} Linkedin % AWS A1 Blog () GitHub ' FlightStats Develop.. 8 Alexa) Coke-Echo - Gittab [Proposal Tracker -

sjadd?project=loyal-curve-107623 * 00 :

() cloud Functicns & Create function

&0 secoeds

htps o1 Joyal-curve 107623 | cloudfunctions nethello-sord

Figure 5-10. Google Cloud provides an easy setup for Cloud Functions
139

https://cloud.google.com/sdk/docs/

CHAPTER 5 © GOOGLE CLOUD

We are going to select an HTTP trigger to make this a base function for our HTTP trigger function.
Google is similar to Azure in that it provides you with a URL to access and trigger your HTTP functions.
With this, we can test and run our function without having to stand up an entire API. Configuration for any
function requires a name, trigger, region, memory, timeout, source code and source bucket. Names do not
have to be unique universally, just within your functions. Google Cloud also gives you the choice of editing
your code inline or uploading a zip. Since this function is going to be simple and small, we can edit it inline.

The hello-world HTTP triggered function Google provides you with simply takes the incoming request
body and returns it to the console for the user to see. The function responds to any HTTP request that can
provide a "message" field in the body. To test it and get comfortable with the new environment, we will
stick with the hello-world HTTP function provided by Google. Once it is created, you should see it pop
up in the list of functions. If you click on the function, you will have access to general monitoring, trigger
configuration, source code, and testing.

If we look at testing, there is an input box that lets us define the triggering event. There is also an output
box that will show us the results from the logs. To start, let’s create a test event that just says Hi to us.

"message": "Hi Maddie"
Figure 5-11 shows this test method in execution.
© C @ Secure hips:/jconsole.cloud.google.comfunctions jdetails/us-central] fhelo-worldTproject =loyal-curve- 10762 3&tab=testing&duration=PT 1H a 00 ¢

! Apos wy Workday ceptech B Leaming Locker & Developer - Interme.. A Cloud Guru [Linkedin

¥ MWS5 A Blog) GitHub 7 FlightStats Develop.. @ Alexa M} Coke-Echo - GitLab [Proposal Tracker -_.

= Google Cloud Platform 2= bello world -

() Cloud Functions « Function details F BT EOELETE [{COPY E VIEWLOGS

Ganeral Trigger Scwce Testng

Tt the function |

Dutput

Success: wl Haddle o

Logs
Showing up 1o 100 log ectries

See all logs for this function execution
* B} 22:47:04.564 Punction exscution started
+ @ 2

4.755 Bl Maddie

04.859 Punction emscwtion took 295 ms, fimished with statos code: 200

Figure 5-11. This function returns an output equal to the input and sends us logs detailing the trigger

140

CHAPTER 5 © GOOGLE CLOUD

The function should trigger an output very similar to the input and should also trigger logging for the
function. If you click “See all logs for this function execution,” you will be taken to Stackdriver logging. You
should also be able to access this publicly. If you grab the URL for the function and copy it into Postman with
arequest, you should get the same result (Figure 5-12).

M rooner mpot [) miger v O & £ W

No Emronment ~ O 4
netpactius contrall 4y

Collections.
POST v hitps/ius-central -loyal-curve-107623.doudfunctions nethello-world Params Send o Save >
NS
Budy &
Reservations
@ form-data @ xwwwiom-urlencoded @ raw @ binary

“hella morld”

HotelRooms

Postran Echo 3: hello world

Figure 5-12. Postman POST request to our Hello World function

Next, we are going to look at Stackdriver logging. This is helpful for debugging and for the construction
of our function.

Stackdriver Logging

Stackdriver logging allows us to store, search, analyze, monitor, and alert on log data and events from Google
Cloud Platform and AWS. I actually haven’t used this with AWS yet, but the integration is an important step.
Alot of companies fear transition to the cloud due to vendor lock-in. Providers that embrace this fear and
provide solutions for it are making the right move by being more integrative.

The Stackdriver API takes in any log data from any source. This is great because it also allows analysis of
this log data in real time. Stackdriver logging includes these features:

e Custom Logs / Ingestion API: Stackdriver Logging has a public API which can be
used to write any custom log, from any source, into the service.

e AWS Integration / Agent: Stackdriver Logging uses a Google-customized and
packaged Fluentd agent that can be installed on any AWS or Cloud Platform VMs
to ingest log data from Cloud Platform instances (Compute Engine, Managed VMs,
Containers) as well as AWS EC2 instances.

141

CHAPTER 5

GOOGLE CLOUD

Logs Retention: Allows you to retain the logs in Stackdriver Logging for 30 days, and
gives you a one-click configuration tool to archive data for a longer period in Google
Cloud Storage.

Logs Search: A powerful interface to search, slice and dice, and browse log data.

Logs Based Metrics: Stackdriver Logging allows users to create metrics from log data
which appear seamlessly in Stackdriver Monitoring, where users can visualize these
metrics and create dashboards.

Logs Alerting: Integration with Stackdriver Monitoring allows you to set alerts on the
logs events, including the log-based metrics you have defined.

Advanced Analytics with BigQuery: Take out data with one-click configuration in
real time to BigQuery for advanced analytics and SQL-like querying.

Archive with Cloud Storage: Export log data to Google Cloud Storage to archival so
you can store data for longer periods of time in a cost effective manner.

Stream Logs with Cloud Pub/Sub: Stream your logging data via Cloud Pub/Sub
with a third party solution or a custom endpoint of your choice.

Splunk & Logentries Integration - Stackdriver Logging supports easy integration with
Splunk and Logentries (Rapid?7).

Audit Logging - Stackdriver Logs Viewer, APIs, and the gCloud CLI can be used
to access Audit Logs that capture all the admin and data access events within the
Google Cloud Platform.

Stackdriver reminds me a lot of CloudWatch in AWS. AWS provides options to send CloudWatch logs
into Elasticsearch. This gives you a lot of the same features we are looking at in Google Cloud Stackdriver. It
is a central repository for all logging. If you navigate to it after triggering our hello world project, you will see
all of the logs for that action. They are sorted by time period and give you the exact request that comes in.
Figure 5-13 will give you a better idea of how Stackdriver logging works.

142

CHAPTER 5 GOOGLE CLOUD

@ Secure hatps://console.cloud.googhe.comiogs /vieweriproject=loyal-curve- 10762 38rescurce=cicud_function&minLogLovel=O&epandall=falsohadvancedFiter=resourcetype®3be. & O @ 3
H1 Apos y Workday captech B Learning Lockee & Developer - IMerme.. A Cloud Guru [3) Linkedin i AWS Al Blog () GitHub 7 FlightStats Develop.. @ Alexs M) Coke-Echo - Gitlab [Proposal Tracker -.. »

Google Cloud Platform s hellowerdd =

| sl CREATE METRIC & CREATEEXPORT (& »
E: Logging

L
Lo e respuzee. typeselood_fenerlon” -

i resource.label notion_nases"mello-werid®

W Logsbased Metrics S T
{ labels.execution id="kaidkzZpizms®
& Ewons “Coniral + Epace’ for watosemplese sggentisns
© Resoucetsage ST oo -
20170806 EOT View Optiona =
+ Nis cider ertrien found matching current filter. +

= B 22:47:04.564 hello-world kaidksipjsas Function exeoution started
i Expand all | Collapse all
insertIds *000080-4d0asdIl-B644-4895-9685-e2d43a7T6840"
v labelsi (-}
logNase: *projects/loyal-curve-107621/logs/clowdtunct lons. googleapls.condiFoloed-tfusctions®
receiveTimestanpi °1017-08-07102147114.4670147182"

» Tesource: {-}

severity: *DEBUG"
tion execution started”
OTTOZsAT 04, SE49020052"

textPayload: °P
timestamp: *2817-8

22147:04.755 hello-world kaltkZpjeme Wi Naddie

B creavi04.959 hello-wesld keidkslpiess resctics exesutios took 195 =s, finished with statcs code: 200

Figure 5-13. Stackdriver gives you access to metrics, exports of logging, and logging on a function for a
particular date

Stackdriver gives you access to logs, metrics, traces, and other signals from your infrastructure
platform(s), virtual machines, containers, middleware, and application tier, so that you can track issues
all the way from your end user to your backend services and infrastructure. Native support for distributed
systems, auto-scaling, and ephemeral resources means that your monitoring works seamlessly with your
modern architecture.

If you click on the Google Cloud hamburger icon, you will see an entire section devoted to Stackdriver.
This section includes Monitoring, Debugging, Logging, Trace, and error reporting. We will mostly be using
logging, but it is good to learn about the complete functionality of Stackdriver.

Stackdriver Debugger (Figure 5-14) lets you inspect the state of an application at any code location
without stopping or slowing it down. The debugger makes it easier to view the application state without
adding logging statements. To give an example of how we could use the debugger, I'm going to go to the
console and enable the debugger to access my GitHub.

143

CHAPTER 5 GOOGLE CLOUD

& = C @ Secure hitps://console.cloud.googie.com/debugtorsect =loyal-curve- 107623 * 00
i Apos iy Workday captech B Learming Locker & Developer - Interme. A Cloud Guru [Linkedin 40 AWS A1 Blog () Github 7 FlightStats Develcp.. @ Alexn) Coke-Echo - Gitlab [Proposal Tracker -_. .

Google Cloud Platform 2+ heliowerd ~

rq7 Stackdriver
Select an spplication 1o debug = WHAT'S NE\YQ
.tu Debug
Sebect serce - Snapehot Logpeint
Source nat avadable SERChIrioer DRBUGHE MTE pOU INEDCT The F1ate of
an appiication at any code lecoticn without stopping
‘Current source code of slowing i down. The debugger makes it easier 1o
g r watw the spplhcation state wihout acdng logging
¥ dourcar s e Eoalerc staternents. Learm mose about it here (.
b Smckeiriver Cebugges is not comectly
Alternative source code ~ | contomedionyou project
Local files Plsase fix the following issue and try sgain
View source Fles locally im this browser session. Source code will not be uploaded 1o Google servers. Debugger AP rot ensbled a
Wil fooding a iipe directon. the page Might become uwesponsive. ﬂ
]
Goagle Cloud Source Repository
Manually select a repository and version 10 use
GitHub
Manually select & reposiiory and version 10 use. No source code will be stored on Google servers.
Bitbucket a
Manually seHCt 3 FRDOENONY NG WREEN 10 UED. N 15uce code will B4 siored on Google servers
@ ogs Snapshot History Logpdint History a >

Figure 5-14. Stackdriver allows you to debug your code and provides several options for source code

GitHub will ask you to grant Google Cloud access to your repo. When you do this, you can select a
source from your repo that you want to look at. I have been working on an Alexa Skills project with some co-
workers, so I am going to open that repo up and take a look. Feel free to explore some of your own code. Your
users are not impacted during debugging. Using the production debugger (Figure 5-15) you can capture the
local variables and call stack and link it back to a specific line location in your source code. You can use this
to analyze the production state of your application and understand the behavior of your code in production.

144

CHAPTER 5 GOOGLE CLOUD

€ 5 C @ Secure hitps:/iconsole.cloud.googie.comide bugPreposgithub % 3FrepoRIDmgstigher% 25 2F Suite Service% 2Bcommit%306e 1 5304bA05 3c40057 145063 TbdBOE! 1bc9B206%2605.. &+ O O
#! Apps (y Workday captech B Learning Locksr # Developer - Imerme. A Cloud Guru [Linkedin 3 AWS A1 Blog () GitHub Y FlightStats Develcp.. B Alexs lg) Coke-Echo - Gittab [Proposal Tracker - -

Google Cloud Platform 3 helloworid =

'f Stuchiver Select an application to debug ~ WHAT'S NEW
«Fa Debug
mgstighes/SuteService@deveion » 1 Typea bl name
@thub.comy I import * as Alexs from "alexs-sdk’y @
Aoty 2 impart from . Service’s H
» Resarvations 1 lmpart troa ‘. Service;]
v RoomBegistmticn i isport {foodService} from ° . Services/focdService’; %
ik s impore frem . yiervice' ;
hefoom & import {lockupervice] from °./Bervices/leokupService’; £
* Gethoom 7 let deviceld = malls %
* Staced/Models t questInforsation = eully 5
* UpdateRioom t cardTitle = *'j
» node modules C
packageieon le' "nttpa: /il
weonls, Lot ey on/fo0d ;
v " o, let amenitiesBucketPath = “hitpsi//sl.amazonsws.con/anenities-images/")
» Moowla le: ssasionState = false;
* Senkes % doneservice = '
handierjs 1
handier js map 18 module.exports.SuiteService = (event, context, callback) => {
handier.ts » = Aleza.handler(event, contest, callback);
* node_modules mfoqIS0N. atsinglfy (event ||
» speechassets appld = “amsnl.ssk.skill.fabfbod6-f380-4371-8003-50041TAN9T88"]
i 2 1/ Uscosment below whon testisg with an sctusl device
. 3 IF deviceld = event.context.Systes.device.deviceld:
24 daviceld = “amani.ask.davi au 3
EnvSetup pptx EL console. info(deviceld);
README md . -
pachage fpon ar guestinforsation = questIafo;
publigh an EL alexa.registerfandlers(handlers);
p—— 1] alexa.axecutel)i
severless yml - e
1 1
- 2 le: handlers = {
webpack conlig s 3 /1 love you maddie
4 /iMazndles the lav
[T —
this.emit(1ask’, guestinformatios.F¥ame + °, Welcome to Suite Service, your personal fromt desk assistamt. What can I help you with voday?

te

¢l | Logs SnapshotHistory Logpoint History -

Figure 5-15. Stackdriver lets you look at production code in debugging mode

Stage Bucket

Google Cloud uses the idea of a stage bucket to stage and deploy your code in Google Cloud. We will look
more into buckets during the creation of our Storage Trigger function, but it will be useful to see a high-level
overview now. In Google, the Buckets resource represents a bucket in Google Cloud Storage. There is one
global namespace shared by all buckets. This means every bucket name must be unique.

Buckets (Figure 5-16) contain objects, which can be accessed by their own methods. In addition to the
ACL property, buckets contain bucketAccessControls, for use in fine-grained manipulation of an existing
bucket’s access controls. A bucket is always owned by the project team owners group.

145

CHAPTER 5 GOOGLE CLOUD

L @ Secure hitps://console.cloud.googht.com/storage/browsarimaddie-helio-workd/Tproject=loyal-curve- 107623 * 00 i
3 Apps g Workday captech B Learning Lockee & Developer - IMerme.. A Cloud Guru [) Linkedin 3 AWS Al Blog () Github ' FlightStats Develcp.. @ Alexs M) Coke-Echa - Gitlab [Proposst Tracker -

= Google Cloud Platform 3+ helioword ~

BB Storage Browser F UPLOADFILES F UPLOADFOLDER B3 CREATEFOLDER (3 REFRESH
e Filter by prefie
= Transfer Buckets / maddie hello-world
3 Settings
Harne s Ty Stnrage class Last mechified Share gublicly
[helloword 2017-06-01T11: 561 8442 zip 6158 applcation/zip Muiti Aegional 17, 756 AM
[helloword 2017-0807T01: 3453 1742 zip 6158 apphication/rip MutrRegional AT, 536 PM

Figure 5-16. The storage bucket for my Cloud Function

This is where our Cloud function code is being stored. You can access it from the bucket. You can also
create, upload files, and upload folders. This interface is very similar to AWS S3 to me. It is very simple to use,
easy to understand, and easy to access.

Before continuing to our HTTP event triggered function, we are going to add a couple things to our
Hello World function. Request parameters that we should learn include:

e Request.method (for example, POST)

e Request.get('x-myheader") (for example, “123")
e Request.query.foo (for example, “baz”)

e Request.body.text (for example, “something”)

We are going to elaborate on our Hello World function so it is able to handle different types of requests.
We will use the request.method parameter to specify which action to take in which case. The code in
Listing 5-1 demonstrates how to handle this.

Listing 5-1. This code shows how to handle multiple HTTP requests within one file.

function handlePUT(req, res) {

//handle put request

console.log(req.body.message);

res.status(200).send('PUT Success: ' + "Hello ${name || 'World'}!");
};

146

CHAPTER 5 GOOGLE CLOUD

function handleGET(req, res) {

//handle get request

}

console.log(req.body.message);

res.status(200).send('GET Success: ' + “Hello ${name || 'World'}!");

};

/**
* @param {Object} req Cloud Function request context.
* @param {Object} res Cloud Function response context.
*/
exports.helloWorld = function helloWorld (req, res) {
let name =null;
switch (req.method) {
case 'GET':
handleGET(req, res);
break;
case 'PUT':
handlePUT(req, res);
break;
default:
res.status(500).send({ error: 'Something blew up!' });
break;
}
};

In this code, we are changing our response based on the request type. You should be able to see these
results in Postman. You can see how we'll be able to use this to our advantage later on. Within serverless
architecture, it is usually better practice to separate these requests from each other in the code. For this, you
would have a Cloud function for each request that handles one execution.

We can still use the request.method property here in our more singular functions to double check that
the requests coming in are valid. It is also important to know the structure of the requests coming in. The
body of the request is automatically parsed based on the content type and populated in the body of the
request object. Figure 5-17 demonstrates the request types that Google accepts.

Content Type Request Body Behavior

application/json '{"name":"John"}' request.body.name equals'John'

application/octet-stream 'my text' request .body equals '6d792074657874' (see Node js Buffer
docs)

text/plain ‘my text' request.body equals ‘my text’

application/x-www-form- ‘name=John’ request.body.name equals 'John'

urlencoded

Figure 5-17. Example request bodies for various content types

147

CHAPTER 5 GOOGLE CLOUD

We can test the different request bodies using switch statements similar to the ones we wrote to
determine the method. Inside our POST and GET functions, we will include a switch statement that looks
for the content type and returns the appropriate response. The following code demonstrates this.

/**
* @param {Object} req Cloud Function request context.
* @param {Object} res Cloud Function response context.
*/
exports.helloWorld = function helloWorld (req, res) {
let name =null;
switch (req.method) {
case 'GET':
handleGET(req, res);
break;
case 'PUT':
handlePUT(req, res);
break;
default:
res.status(500).send({ error: 'Something blew up!' });
break;
}
b

function handlePUT(req, res) {
//handle put request
switch (req.get('content-type')) {
// "{"name":"Maddie"}"
case 'application/json':
name = req.body.name;
break;

// 'name=Maddie’
case 'application/x-www-form-urlencoded':
name = req.body.name;
break;
}
console.log(req.body.message);
res.status(200).send('PUT Success: ' + "Hello ${name || 'World'}!");

s

function handleGET(req, res) {
//handle get request
switch (req.get('content-type')) {
// "{"name":"Maddie"}"
case 'application/json':
name = req.body.name;
break;

148

CHAPTER 5 GOOGLE CLOUD

// '"name=Maddie'

case 'application/x-www-form-urlencoded":
name = req.body.name;

break;

console.log(req.body.message);
res.status(200).send('GET Success: ' + "Hello ${name || 'World'}!");

};

If we test this in Postman using a PUT request with a JSON object, we should receive the response
defined in the handle PUT under the application/json content type (Figure 5-18).

M runer mpor [mtgler v 0 h K W

No Emdronment ~ O i
hitpiius-central 4oy

Collections.
PUT ittprcsius-centralloyak-curve-107623.cloudfunctions netello-worid Pararns Send ¥ Save ¥

Body ®
Resenations
@ wwwwform-urlencoded @ rew @ binary

me™: “Moddie"

HotelRooms

HTML ~

PUT Success: Hello Moddie!

Figure 5-18. The Postman PUT request returns the response specified under the PUT function with the
application/JSON switch case statement

Now that we have a basic understanding of handling requests and responses in Google Cloud functions,
we can move on to creating a more full-fledged HTTP trigger function.

HTTP Event

Our HTTP triggered function is going to utilize several components of Google Cloud to create a notification
system. For the HTTP event, we will utilize a POST request and Firebase Realtime database. I am currently
working on an Alexa Skills project that creates requests for guests from their hotel room. I'm going to base
the functionality of this function on that system.

149

CHAPTER 5 GOOGLE CLOUD

Our application is going to take an incoming POST request with a room number and service request
and post it to a database. Our HTTP event will handle POST requests with new guest information and will
add the information to a guest storage bucket. The storage function will then be triggered by this object
upload and will integrate with Firebase to notify the guest. Figure 5-19 shows the plan for the overall
architecture of the next couple of exercises.

POST Request
l /rooms/{roomnumber}

B -G —

Figure 5-19. The POST request will take a room number and add guest data to it in the database

To start, we will go ahead and create another HTTP trigger function. I chose to create a new storage
bucket just to keep all function services together. I also changed the function to execute to httpTrigger and
changed this in the sample code as well. Figure 5-20 shows what my new function’s configuration should
look like.

€ @ Secure hitps:/[console.cloud google.com/functions /add?project =loyal-curve- 107623 * 00 :
1 Apps g Workday captech B Learning Locker & Developer - Interme.. A Cloud Guru [) Linkedin ik AWS A1 Blog () Gitub 7 Fligh - B aexa Echa - GitLab [Proposal Tracker -_.

= Google Cloud Platform £ helloworld =

[) Cloud Functions & Create function

Source code
Inline edvior

2 uplosd
2 from Clowd Storage
Cloud Sourca feposnory

ingexjs package json

L
H sage” is req
waape doiinedi®)y

ay.
roq, body.message))
«mend('Baccasss * ¢ req.body.messagel

Sage backet
B3 mipfunciion Browse

Function 10 evecute
hitpTrigger

Function dephayment might teke a few minutes. To build and test the functicn
Incally. use the locsl emulstor

mc.mc

Figure 5-20. The configuration for http-function

150

CHAPTER 5 GOOGLE CLOUD

Before we continue developing this skeleton of a function, we are going to set up our Firebase
environment. In this aspect of the project, we will use Firebase to create a database and integrate it with our
Cloud function. To connect a function to Firebase Hosting, we will need to set up Cloud Functions, write our
function, create rewrite rules, and deploy our changes.

Firebase Realtime Database

The Firebase Realtime Database is a cloud-hosted database. Data is stored as JSON and synchronized in
Realtime to every connected client. This is perfect for our use case because we can just store JSON objects of
guests and room numbers. When you build cross-platform apps with our iOS, Android, and JavaScript SDKs,
all of your clients share one Realtime Database instance and automatically receive updates with the newest
data. Some applications of Google Firebase include:

e Serving dynamic content: You can perform server-side logic through a function to
return a dynamically generated response.

¢ Pre-rendering for SPA to improve SEO: This allows us to create dynamic meta tags
for sharing across various social networks.

e Lightweight Web App: We can create an API with our Cloud functions for our
Firebase hosting site to asynchronously retrieve content.

One of the more confusing aspects of Firebase and Google Cloud to me was the difference between the
two. They are pretty integrated with one another and share a lot of the same resources and functionality. You
will notice this as you navigate the Firebase portal. While Firebase is primarily for mobile apps, you can use
the scalable and infrastructure-free aspects of it to quickly set up and deploy serverless applications. You can
later integrate these applications with mobile platforms, or continue running them as is.

When you first start with Firebase, you will be prompted to create a project or to import one from
Google Cloud. For our application, we are going to build within Firebase to get exposure to this environment.
However, what I recommend doing after this exercise is to build all of your functions within a project in
Google Cloud and import the entire project into Firebase.

To create an application that utilizes Firebase, we must follow a couple of steps to prep our function.
First make sure you have the latest version of the Firebase CLI. You can install the latest version of the
Firebase CLI by running the following command in your terminal:

npm install -g firebase-tools

This will install the Firebase toolkit on your terminal. We are going to use this to access a Firebase
project and deploy it using Cloud functions. It has a similar functionality to the serverless framework in this
regard. We will be able to completely deploy our project using Firebase tools instead of having to zip and
upload a project folder. Once you install Firebase tools using NPM, your terminal should look something like
Figure 5-21 if Firebase installs successfully.

151

CHAPTER 5 GOOGLE CLOUD

‘ene google-service — node [usrflocal/bin/tirebase init — 138x46

AR B B G i e g
“ W U W i WU uu “
dididd P T T L L T i
e “W W 4 ol “ Wb

@ ‘
“ i U [T T Y) A WG

to initialize a Fir ct 4 is d
s/mstigler/Desktop/Server verl ooglello le-service

h Firebase CLI feat ¥y want to setup for this folder s Space to select Teatures, then Enter to confirm your cho

Figure 5-21. Firebase will install and give you different project deployment options

Firebase provides you with a URL to log in to your Google Cloud account. This will allow you to deploy
to your cloud environment directly. Once you are authorized, you can begin initializing Firebase projects in
the current directory. However, before doing this, you will need to return to the Firebase console and create
an existing project with Hosting. To do this, navigate to console.firebase.google.comand click Create a
New Project. named mine http-project (Figure 5-22).

152

CHAPTER 5 GOOGLE CLOUD

€ C @ Secure hips://conscle firebase.googhe.com Tpis 1 * Q0O i

i Apos iy Workday captech M Learning Locker & Developer - Interme.. A Clwc Gure [3) Linkedin) AWS Al Blog) Gitbub 1 FightStats Develop.. @ Alexa) Coke-Echo - Gitlat [Prepoasl Tracker -

Create a project
Froject name

hitp-project

me Lean more

By procesding and clicking e buton belom, ;-4 55 £4¢ 1o 0% wEng
Firebase o

oTCES I oL DD and agete 1o e Bpplicable ieimy

Figure 5-22. Create a new project in Firebase to connect our function to Firebase hosting
After creating a project, we can initialize it back in our terminal with the command:

firebase use -add

This will prompt you to select your project and create an alias for it. Go ahead and select the project you
created. I chose staging as my alias, but feel free to name yours as you please. After this, we have an existing
project with hosting and can run the following command within our project directory to initialize cloud
functions:

firebase init functions

This command does a couple of things. First, it creates a functions directory with an index. js file.
This is your cloud function file that we will be editing. Second, the command adds a.firebaserc file to your
project directory. This file is where your alias definitions are written. We don’t need to change this, but feel
free to take a look and see how the alias is defined. Mine looks like the following:

{
"projects": {
"staging": "http-project-6da2a”,
"default": "http-project-6daza”
}
}

153

CHAPTER 5 GOOGLE CLOUD

Finally, the init command creates a firebase. json file. This file is the configuration file for our current
directory. We are going to use this file to handle rewrites within our function. Rewrites aren’t really necessary
for our application, but we will go through an example of using them just to be comfortable with them. With
rewrite rules, we can direct requests that match specific patterns to a single destination.

An example of this would be executing a specific function when a particular page is reached. In our
application, we can think of several situations where this might be handy. We could have a rewrite for a /
guests page that triggers a guest function that returns a list of guests currently staying at the hotel. We could
also have an /alerts page that displayed all of the alerts guests have sent in. Keep these in mind as you build
your functions out later.

For now, we are going to edit our index. js file to display our HTTP request in the browser. The following
code shows an example of how we will do this. You will need to do an NPM install to get the cors module.

Note CORS stands for cross-origin resource sharing. Enabling cors allows resources to be accessed from
another domain outside the domain from which the first resource was served.

'use strict';
const functions = require('firebase-functions');
const cors = require('cors')({origin: true});

exports.alerts = functions.https.onRequest((req, res) => {

cors(req, res, () => {
let request = req.query.alert;
let roomnumber = req.query.roomNumber;
console.log("alert " + alert + " room " + roomnumber);
if (!request) {
request = req.body.alert;
roomnumber = req.body.roomNumber;
}
res.status(200).send(<!doctype html>
<head>
<title>Incoming Request</title>
</head>
<body>
Request: ${alert}
</br>
RoomNumber: ${roomnumber}
</body>
</html>");

1)
1;

154

CHAPTER 5 GOOGLE CLOUD

The code takes the incoming request and separates it based on its query. It then returns the request to
the user in HTML format. We will also want to edit our firebase. json file to redirect our request based on
the method. The following code is how I chose to redirect my function:

{
"hosting": {
"public": "functions",
"rewrites": [
{
"source": "/alerts",
"function": "alerts"
}
]
}
}

This specifies the folder that our project is pulling from, the source we want our requests to be directed
to, and the name of the function we want to execute. To deploy this function, we will use the firebase
deploy command in our root directory:

firebase deploy

Figure 5-23 shows the result.

[N] [HTTPTrigger — -bash — 153x28

Figure 5-23. The deployment of our index. js file to our Firebase hosting environment

Once your code has successfully deployed, we can test the functionality by simply hitting the function’s
URL in our browser. To do this, enter the following URL with your request:

https://us-centrali-<project name>.cloudfunctions.net/alerts?alert=<your
alert>&roomnumber=<number>

This will submit the request to your function that you created and return the response you specified
(Figure 5-24).

155

CHAPTER 5 GOOGLE CLOUD

Figure 5-24. The request is formatted and displayed in your browser

Obviously, this isn’t the most glamorous way to display our information in the browser, but it still gives
you a feel for how Cloud Functions integrates with Firebase and the different applications to this integration.
You can also access this request in Postman (Figure 5-25). You can take the query strings and make them a
part of the body of the request to test the different ways to access our information.

[runner impen [Builder matigler v O K & W

cerrall-ho * No Eméronment v O ﬂ.
<o o

Collections.
PUT ~ hitps/us-centrall-hatp-project-BdaZa doudfuncicns.net/alens "y Save v

Body @
@ formdsts @ xwwwilormrencoded @ raw @ binary

Serveriess Demo

Postman Echo

Pretty

<ldoctype html»< ><

Figure 5-25. Postman accepts the same request and will accept a JSON body format

In this exercise, we have used Cloud Functions with Firebase to develop an application that takes an
incoming POST request, presents it in the browser, and submits it to a Firebase Realtime database. Now
that we know our function is being triggered, let’s do something real with the information coming in. We
are going to build off our current serverless function to allow the data coming in to be stored in a Firebase
Realtime database. To do this, we are going to edit our function to connect to a database that we name and
push each incoming entry into the database. The following code demonstrates this concept in action.

'use strict';

const functions = require('firebase-functions');
const admin = require('firebase-admin');
admin.initializeApp(functions.config().firebase);
const cors = require('cors')({origin: true});
const storageModule = require('./storage');

156

CHAPTER 5 GOOGLE CLOUD

exports.alerts = functions.https.onRequest((req, res) => {

cors(req, res, () => {
let alert = req.query.alert;
let roomnumber = req.query.roomNumber;
let phoneNumber = req.query.phoneNumber;
let name = req.query.name;
console.log("alert " + alert + " room " + roomnumber);
if (lalert) {
alert = req.body.alert;
roomnumber = req.body.roomNumber;
phoneNumber = req.body.phoneNumber;
name = req.body.name;
}
admin.database().ref('/alerts').push({alert: alert, roomnumber:roomnumber, phoneNumber:
phoneNumber, name: name}).then(snapshot => {
D;
res.status(200).send(<!doctype html>
<head>
<title>Incoming Request</title>
</head>
<body>
Request: ${alert}
</br>
RoomNumber: ${roomnumber}
</body>
</html>");
1;
1;

exports.sendAlert = functions.database.ref('/alerts/{pushId}"').onWrite(storageModule.
handler);

The Realtime database is a NoSQL database and as such has different optimizations and functionality
than a relational database. The Realtime Database API is designed to allow only operations that can be
executed quickly. This enables us to build a great real-time experience that can serve millions of users
without compromising on responsiveness.

Asyou can see in this code, we are first checking the incoming request parameters to see if the request
is coming in through the query string or a JSON body. We then parse the request and feed it to the Alerts
path in the Realtime database for our project.

Once you have this code fleshed out, we can go ahead and redeploy it to our application. We will use the
same firebase deploy command.

Note We are using the cors module in this exercise, so make sure you have added it to your package.
json file and have installed it in the root folder with the npm install command before deploying.

When the code is deployed, we can test our changes by hitting the same URL in the browser. We will use
the same alert and roomNumber query strings to ping the function. We can check the success of our function
in a couple of ways.

157

CHAPTER 5 GOOGLE CLOUD

If we navigate back to the Firebase portal, on the left side you will see a Database option. Clicking this
will take you to the Database console with the real-time data. You should see a structured data table under
the name of your project. Below the project name, you will see any paths you have created and the data
associated with each. My Database panel looks like Figure 5-26.

€ C @ Secure | hitps:j/conscle.firebase.google.com/project/nttp-project-Bda 2a/database/data alerts w| 00 i
A Cloud Guru [) Linkedin & AWS Al Blog () Github ¢ FiightStats Develop.. & Alexa Ay} Coke-Echo - GitLab [Proposs! Tracker -._

7 Apps y Workday captech B Learming Locker & Develoge

@ Firebase

Overview Realtime Database

DATA

4l Anabytics

5 Authentication GD hips:/hipproject-6daZa frebaseio.comyalens [+]
2 Databaze
By Storage
® Hosting ’I_“‘g

= -KiEyS2X¥onakUCensdR
) Functions

— alert: “please send me towels®

B TestLan roomnumber: “121°
Crash Reporting
@ Performance
=]

12 Remote Config

Spark UPGRADE
Free $0/month

Figure 5-26. Postman accepts the same request and will accept a JSON body format

The alert and roomnumber are associated with a particular key that is generated upon the request. You
can add as many properties as you would like and they would change dynamically with the request. The
Firebase Realtime database data is stored as JSON objects. Google likes to describe the structure as a cloud-
hosted JSON tree. Unlike SQL, there are no tables or records. All data added simply becomes a new node in
the existing JSON structure with an associated key.

You do have the ability to provide your own keys in your POST request. Google also recommends
several best practices for structuring your data, which we’ll look at next.

Tip For NoSQL beginners, feel free to explore this site to learn your way around this concept: https://

www.w3schools.com/nodejs/nodejs_mongodb.asp

Avoid Nesting Data

Because the Firebase Realtime Database allows nesting data up to 32 levels deep, you might be tempted to
think that this should be the default structure. However, when you fetch data at a location in your database,
you also retrieve all of its child nodes. In addition, when you grant someone read or write access at a node in
your database, you also grant them access to all data under that node. Therefore, in practice, it's best to keep
your data structure as flat as possible.

158

https://www.w3schools.com/nodejs/nodejs_mongodb.asp
https://www.w3schools.com/nodejs/nodejs_mongodb.asp

CHAPTER 5 GOOGLE CLOUD

Flatten Data Structures

If the data is instead split into separate paths, also called denormalization, it can be efficiently downloaded
in separate calls, as it is needed.

Create Data That Scales

When building apps, it's often better to download a subset of a list. This is particularly common if the list
contains thousands of records. When this relationship is static and one-directional, you can simply nest the
child objects under the parent.

Sometimes, this relationship is more dynamic, or it may be necessary to denormalize this data. Many
times you can denormalize data by using a query to retrieve a subset of the data. However, even this may be
insufficient. Consider, for example, a two-way relationship between users and groups. Users can belong to a
group, and a group comprises a list of users. When it comes time to decide which groups a user belongs to,
things get complicated.

IMPROVING OUR SERVERLESS FUNCTION

Improve by enforcing strongly typed variables and authorization

Create strongly typed variables:

1. Use TypeScript and create models for our incoming requests. This will enforce
structure in both our code and our requests. Example:

export interface alertModel {
alert: string,
roomNumber: string

}

2. Require that incoming requests meet this model to make sure we aren’t getting
random data in our requests or invalid data in our requests.

3. Check the request method before handling the request. We want to look only at
POST and PUT requests in this case. GET requests would be handled differently.
Utilize the switch statements we created in Hello World to implement this.

Add an authorization piece:

1. Currently, our function is wide open to any and all requests coming through our
HTTP endpoint. With a production application we would not want that to be the
case. There are a couple of ways to handle this, one of them being creating an
authorization header.

159

CHAPTER 5 GOOGLE CLOUD

2. Use the Firebase Id token along with the request in the Authorization header to
verify the request using the Firebase Admin SDK. There is a good example of this
implementation on GitHub at

https://github.com/firebase/functions-samples/blob/master/
authorized-https-endpoint/functions/index.js

The code for both of these improvements on the project can be found here: https://github.com/
mgstigler/Serverless/tree/master/ANS/aws-service/HTTPTrigger

In the next section, we will use the skills and tools we learned with the HTTP Trigger to create a separate
Google Cloud function triggered by a storage event in Firebase.

Storage Event

In this section we will continue developing our notification application for hotel guests by incorporating

a storage trigger event that sends our storage function into action. We will use the data POST from the
previous exercise as this storage trigger. Once our function is triggered, we will use Twilio again to send off a
message to the customer.

Before we get going, we will need to make a couple of changes to our current HTTP function. We want
to be able to store the guest’s name and phone number in addition to their request and room number. To do
this, go back to your function and make sure these fields are of types that can be submitted either by query
string or by JSON post body. Once that is done, we can begin creating our function.

Create our Storage Triggered Function

As I mentioned earlier, we are deploying this application through Firebase to learn something new and to
demonstrate different approaches. Unfortunately, we are about to experience one of the pain points of this
deployment method and that is multiple functions per project.

To be able to handle this change, we are going to restructure our project code a bit. Figure 5-27 shows
the functions folder with our index JavaScript file and an additional storage. js file. We are going to place
our second function directly in this folder and will handle separate requests within the index. js file.

160

https://github.com/firebase/functions-samples/blob/master/authorized-https-endpoint/functions/index.js
https://github.com/firebase/functions-samples/blob/master/authorized-https-endpoint/functions/index.js
https://github.com/mgstigler/Serverless/tree/master/AWS/aws-service/HTTPTrigger
https://github.com/mgstigler/Serverless/tree/master/AWS/aws-service/HTTPTrigger

CHAPTER 5 GOOGLE CLOUD

EXPLORER

4 OPEN EDITORS
index.js GoogleCloud)/g:
index.js AWS
firebase.json G
package.json Gc
storage.js Goog
index.js «

package.json

package.json
function.json Azure
SERVERLESS

.

3

Agnostic
AWS
Azure

CloudAgnestic

.

GoogleCloud
4 google-service
» HelloWorld
4 HTTPTrigger
+ functions
» node_modules
index.js
package.json
storage.js
firebaserc
firebase.json
* node_modules
* PubSubTrigger
¢ StorageTrigger
.gitignore
package.json
serverless.yml
.gitignore
README.md

Pmaster © QOAO

Figure 5-27. We are going to create another JavaScript file within our current project structure to demonstrate
how Firebase splits up functions in its environment

The reason we need to include this file directly in our functions folder within our HTTP trigger event is
because we need access to the HTTP event Realtime database. We do not have access to databases between
projects, so we will deploy the two functions together.

Later, we will see an example of how we can deploy all of our functions through the Google Cloud
environment and still have them show up in Firebase as separate entities. To be able to reference the code
that we will be using in the storage. js file, we will need to include it in the index. js file.

The following code demonstrates how I have implemented this.

'use strict’
const functions = require('firebase-functions');
const admin = require('firebase-admin');

admin.initializeApp(functions.config().firebase);
const cors = require('cors')({ origin : true });
const storageModule = require('./storage');

161

CHAPTER 5 GOOGLE CLOUD

We first require the storage. js file to be used in our index file.

exports.sendAlert =
functions.database.ref('/alerts/{pushId}").onWrite(storageModule.handler);

Then we can use this variable to call the handler in our storage. js file whenever a new item is written
to our Realtime database. You can test this by just putting a console. log in your storage file and seeing if it is
triggered when the index file is triggered.

We will go ahead and deploy this function to make sure Firebase is recognizing two separate Cloud
functions. Within the Firebase console, we can navigate to Functions and see the active functions (Figure 5-28).
If it deployed correctly, you will see two separate functions: alerts and sendAlert. You will also notice the
different trigger events for each. You should see a Write event for the sendAlert function.

« @ Secure hitps://consolefirebase.google.com project/hitp-project-Bda2a functions st * Q0 ¢
! Apos y Workday ceptech M Leaming Locker & Developer - IMerme.. A Cloud Guru [B) Linkedin 3 AWS Al Blog) GitHiub 7 FlightStats Develcp.. @ Alexs M Coke-Echo - Gitlab [Proposal Tracker -_.

@ Firebase

Functions [BETA

DASHEOARD LOGS

ﬂ Current billing period =
Aug 1- Aug 31, 2017 (EDT)
Authentication

Function Event Executions Macdian run time

Database

Storage

@@ Wk

Hosting

Functions

B Testiab

(-

Crash Reporting

e

Performance

Motifications

n o

Remote Config

&

Dynamic Links

€ AdMon

S"‘"‘ UPGRADE

Figure 5-28. Firebase separates functions by trigger events. You will see logs for both in the same console.

We should also make sure the trigger is happening on the appropriate write. We want to be able to
track all writes to the alerts table. To do this, we need to reference only alerts/{pushId}. If we wanted to
only look at writes specifically related to room numbers, we could do this by referencing alerts/{pushId}/
roomnumber. This is something that is good to keep in mind for future iterations. You could have several
functions that all read on different keys in the alerts JSON tree.

162

CHAPTER 5 GOOGLE CLOUD

Reacting to the Triggered Event

We want to continue building out our application by creating the functionality of the storage triggered
function. Right now, we have two needs for this function:

1. Send a text to the guest to let them know their request has been received and a
service is on its way.

2. Update the database to reflect this change and let the function know the alert has
been sent out.

To handle the text message requirement, we will go back to our Twilio account and utilize this service
for text messaging. If you didn’t set up a Twilio account for the Azure chapter, please go back and take care
of that now. We are going to use Firebase environment variables to store the auth token and the account ID.
The Firebase SDK for Cloud Functions offers built in environment configuration to make it easy to store and
retrieve secure data for our project without having to redeploy.

To store our Twilio data, we can use the following Firebase command in our Command Line:

firebase functions:config:set twilioservice.authtoken="XXXXXXXXXXXXXX" twilioservice.
accountsid="XXXXXXXXXXXX"

To check that our information was stored correctly, we can access the environment variables by using
the following Firebase command:

firebase functions:config:get
The following demonstrates what this process should look like in your terminal:

mbp-mstigler:HTTPTrigger mstigler$ firebase functions:config:set twilioservice.authtoken="
XXXXXXXXXXXX " twilioservice.accountsid=" XXXXXXXXXXXX "
v Functions config updated.

Please deploy your functions for the change to take effect by running firebase deploy --only
functions

mbp-mstigler:HTTPTrigger mstigler$ firebase functions:config:get

"twilioservice": {
"accountsid": " XXXXXXXXXXXX ",
"authtoken": " XXXXXXXXXXXX *
}

}

Now we have set up our environment variables and can use them throughout our storage function.
The following code establishes the Twilio client with our two authentication pieces, stores the incoming
query strings as local variables, creates a message using these variables, and sends it to the recipient.

163

CHAPTER 5 GOOGLE CLOUD

'use strict'

const functions = require('firebase-functions');
const admin = require('firebase-admin');

exports.handler = (event) => {
const accountSid = functions.config().twilioservice.accountsid;
const authToken = functions.config().twilioservice.authtoken;
const client = require('twilio')(accountSid, authToken);

var alert = event.data.val();
console.log("Alert " + JSON.stringify(alert));
var number = alert.phoneNumber;
var name = alert.name;
var room = alert.roomnumber;
client.messages.create({

from: '+18178544390',

to: number,

body: "Hello " + name + "! Your request is on the way to room " + room +"."
}, function(err, message) {

if(err) {

console.error(err.message);

}

D;

return event.data.ref.parent.child('alertSent').set("alert has been sent");
};
We can test this code by deploying it and passing in a query string with the four required variables. If

all goes well, you should receive a text from your Twilio trial account with the message body you provided
(Figure 5-29).

164

CHAPTER 5 GOOGLE CLOUD

eseco Verizon LTE 9:15 PM @ 9% 32%m)
&)
< @
(817) B54-4390

SETILITUIT YyOUr 1wino uidn
account - Hello Maddie! Your
order of Mac 'n Cheese is on
the way.

Sent from your Twilio trial
account - Hello Maddie! Your
order of Mac 'n Cheese is on
the way.

Sent from your Twilio trial
account - Hello maddie! Your
request is on the way to room
101.

0 | o
100

QIWIE]R|T]YJU
AIS|DJFJGIH]J]K]L

4+ Z|X|CJVIBINIM =

123 @ 0 space return

Figure 5-29. Postman accepts the same request and will accept a JSON body format

Once we have the texting portion of this function complete, we can go ahead and add the logic to add
to our Realtime database upon sent text message. To do this, we are going to add an alertSent field with a
message that describes whether the alert has been sent.

return event.data.ref.parent.child('alertSent').set("alert has been sent");
We will write this return statement at the end of our storage JavaScript file. It sets an alertSent sibling

in the Alerts database and returns a promise. We are setting a sibling so we can keep our alert data structure
the same while still providing new information.

Note When you perform asynchronous tasks inside Google Cloud functions with Firebase, they must return
a promise. In this case, a promise includes writing to the Firebase Realtime Database. Setting a variable in the
database returns a promise.

When we trigger it again, we should now see this new value in our Realtime database (Figure 5-30).

165

CHAPTER 5 GOOGLE CLOUD

£ @ Secure hitps://console firebase.google.com/project hitp-project-BdaZa /database data 00 :
! Apps yy Workday captech B Learning Locker & Developer - interme.. A Cloud Guru [) Linkedin) AWS Al Blog () Github 7 FlightStats Develop.. 8 Alaxa M) Coke-Echao - Gittab [Proposal Tracker -_. -

Realtime Database

A Ovenview -] alert: “please sond me a towel”
roomnumber: ~181°

al Anatytics O -KiNrVNINAWKIOGTULSD
O -KiNsSUBS0I358Y_YJdO
O -KrNt4uCa¥ 1gMnidaiEn
AL Authentication O -KeNtyZRu-TIZTRGW2SR
& Database O -KiNu-ge_GFYWZISI_m2F
B Stonge ﬁ <Krivizo20AgaSrqan
' B -KeNwk7_WezjlSblefPn
© Hosting O -KrNxdMI6Tga9pW2zDXn
() Functions = -KrO-thN_73IxKe_DnZ
B Testiab b alert: “please send towels”
P ——— | roomnumber: “181"
O -KrO1NOye ImS5-12x7ugX
@ Performance © -Kro27YaJMishPdi7mPn
0 K056 miulkXOech
T n -KrO7Cxik7_U-mSElaky
O -Kr0TcS0hQui1 YKISTYD
3 #emow Corflg O -KrO719z0dL12e_eu7Jz
& Dynamic Links < -KrQB25Yn2ZAYg NddcWE
alert: -Pllﬂﬁe send towels”
f— name: “maddie”
Q aduon |- phoneNumber: 18178873442

Epark , UPGRADE roomnumber: 181

alertSent: “alert has been sent”

Figure 5-30. Our Realtime database has now been updated to reflect the new sibling alertSent

We can also check the status of our function through the logging capabilities of Firebase. If you navigate
to the Functions tab, you will see a Logs tab at the top. This will show logs for all functions in the selected
project. The logs will be sorted by time and will distinguish between a console.log statement, function
success statements, and errors. You will also be able to see what function the logs are associated with.

In Figure 5-31 you can see I have incoming logs for both functions as one triggers another.

166

CHAPTER 5 GOOGLE CLOUD

-Bda2a/functions/logs?search=8severity=DEBUG

ud Gury (0] Linkedin & AWS AIBiog () GitHub ¢ FlightStats Develop. & Alexa Iy Coke-Echo - Gitlab [Proposal Tracker - B Elevate 2017 - Home [

Q, searchlogs = Allfunctions * Allloglevels » {T) ~ n

Time 4

Aug 13,2017

7T 7TT0TO@T0TOTDTOTTOTDTDOTTUTOT

Figure 5-31. Logging in Firebase is very similar to logging in Cloud Functions in the Google console

You can also view these logs in the Google Cloud console when we use a Google Cloud project to import
into Firebase. Overall, Firebase shares a lot of the same capabilities that the Google Cloud environment
provides. It is good to get exposure to this because the two environments are very integrated and going
forward I predict their being even more integrated.

In the next section, we are going to look at a pub/sub trigger in the Google Cloud console and learn how
to take our Google Cloud projects and view them and execute them using Firebase.

167

CHAPTER 5 © GOOGLE CLOUD

IMPROVING OUR SERVERLESS FUNCTION

Improve by separating logic and utilizing serverless framework

Separate AWS logic from handler:

1. Use environment variables for AWS-specific logic or move AWS logic to a shared
folder.

2. Create a Services folder that is specific to AWS and serves DynamoDB data.
Utilize the Serverless Framework:

1. Follow instructions for AWS setup on Serverless Framework.

2. Develop and deploy a function using Serverless Framework instead of manually.

The code for both of these improvements on the project can be found here: https://github.com/
mgstigler/Serverless/tree/master/AWS/aws-service/HTTPTrigger.

In the next section, we will use the skills and tools we learned with the HTTP Trigger to create a separate
Lambda function triggered by a storage event.

Pub/Sub Event

In this serverless function, we are going to create a function that is triggered by a Pub/Sub event. We will
create this function in the Google Cloud console and will then import the project to Firebase to test it and
view the logs.

What Is Google Cloud Pub/Sub?

Google Cloud Pub/Sub provides scalable, flexible, and reliable, message oriented middleware. It provides
many-to-many asynchronous messaging that decouples senders and receivers. It offers highly available
communication between independently written applications. Google provides several common scenarios
that exemplify use cases for the Pub/Sub service. These scenarios include:

e Balancing workloads in network clusters: A large queue of tasks can be efficiently
distributed among multiple workers, such as Google Compute Engine instances.

¢ Implementing asynchronous workflows: An order processing application can
place an order on a topic, from which it can be processed by one or more workers.

e Distributing event notifications: A service that accepts user signups can send
notifications whenever a new user registers, and downstream services can subscribe
to receive notifications of the event.

e Refreshing distributed caches: An application can publish invalidation events to
update the IDs of objects that have changed.

e Logging to multiple systems: A Google Compute Engine instance can write logs to
the monitoring system, to a database for later querying, and so on.

168

https://github.com/mgstigler/Serverless/tree/master/AWS/aws-service/HTTPTrigger
https://github.com/mgstigler/Serverless/tree/master/AWS/aws-service/HTTPTrigger

CHAPTER 5 © GOOGLE CLOUD

e Data streaming from various processes or devices: A residential sensor can stream
data to backend servers hosted in the cloud.

e Reliability improvement: A single-zone Compute Engine service can operate in
additional zones by subscribing to a common topic, to recover from failures in a
zone or region.

The main concepts in Pub/Sub include the publisher, message, topic, subscription, and subscriber.
Figure 5-32 illustrates how these components work together to create a unified message flow.

-_ Publisher

o Message

|

Cloud Pub/Sub
Topic ' == Message
l @® ™ Storage
0 Subscription v—‘
(4] Message s} Ack
‘.; Subscriber S

Figure 5-32. The publisher creates a message that is posted to a topic with a series of subscriptions that all
receive the message

The following describes each of the resources used in the model. It is important to understand these
concepts before jumping into the creation of our serverless function:

e Topic: A named resource to which messages are sent by publishers.

e Subscription: A named resource representing the stream of messages from a single,
specific topic, to be delivered to the subscribing application.

e Message: The combination of data and (optional) attributes that a publisher sends to
a topic and is eventually delivered to subscribers.

e Message attribute: A key-value pair that a publisher can define for a message.

Google Cloud has a concept of background functions, which operate differently than HTTP functions.
We use background functions whenever we want our function to be invoked indirectly via a message on a
Google Cloud Pub/Sub topic or a change in a Google Cloud Storage bucket. The background functions take
two parameters, an event and an optional callback function.

169

CHAPTER 5 GOOGLE CLOUD

Creating Our Pub/Sub Function

We are going to go ahead and create our Pub/Sub triggered function. First, we will need to create a Pub/Sub
topic that we want to trigger our function. From the Google Cloud console, navigate to the Pub/Sub service
and click Create a Topic (Figure 5-33). We are going to create a topic called AlertService. This will be the
topic that triggers our function.

“« C @ Secure cloud google. bitopieLi ° v 107623 * 00 ¢
il Apps y Workday captech B Learning Locker & Developer - Interme.. A Cloud Guru [Linkedin 3 AWS A1Blog () GitHub ¢ FlightStats Develcp.. @ Alexa ! Coke-Echa - GitLab [I° Proposal Tracker -

Create a topic

Atogic forwards messages from publishers 10 subscribers.
Mame

Figure 5-33. Create a topic to trigger our function. Any posts to this topic will cause our function to execute.

After we have created our topic, we are going to navigate back to the Google Cloud Functions panel and
create a new function within our current project. We will make our trigger the Pub/Sub topic we just created.
To test the functionality of using the Pub/Sub topic, we will initialize our function with the provided Google
Cloud template. This simply writes the event to the logs.

/**
* Triggered from a message on a Cloud Pub/Sub topic.
*
* @param {!Object} event The Cloud Functions event.
* @param {!Function} The callback function.
*/
exports.subscribe = function subscribe(event, callback) {
// The Cloud Pub/Sub Message object.
const pubsubMessage = event.data;

// We're just going to log the message to prove that

// it worked.
console.log(Buffer.from(pubsubMessage.data, 'base64').toString());

170

CHAPTER 5 © GOOGLE CLOUD

// Don't forget to call the callback.
callback();

};

When we go back to our Pub/Sub topic, we can click Publish Message, write a message, and send it
to our topic. If all goes as planned, we can view our message in our logs in Google Cloud. When you get a
success response, import our project into our Firebase console. To do this, navigate to console.firebase.
google.comand click Import Google Project. Import the overall project. Mine is still named Hello World.

You can then view the Pub/Sub function in the Functions tab. You should see the topic AlertService
as the trigger and the execution that you just invoked. If you click on Logs, you will also see the logs for that
Pub/Sub invocation we just created.

We are now going to add to our function so it does a little more than just logging to the console. Go
ahead and do another firebase init in your project folder where your index. js file is stored. When
prompted to select a project, select the Google Cloud project we have been developing in. Now, when we get
a request through our topic, we want to store it in the alerts table in our Realtime database.

The following code demonstrates how we will handle the incoming request.

'use strict';

const functions = require('firebase-functions');
const admin = require('firebase-admin');
admin.initializeApp(functions.config().firebase);

exports.subscribe = functions.pubsub.topic('AlertService').onPublish(event => {
const pubSubMessage = event.data;
// Get the “name” attribute of the PubSub message JSON body.
let alert = null;
try {
alert = pubSubMessage.json.alert;
console.log("Alert: " + alert);
admin.database().ref('/alerts').push({alert: alert}).then(snapshot => {
console.log("success!");

};

} catch (e) {
console.error('PubSub message was not JSON', e);
}

D;

Deploy this code using the firebase deploy command in your terminal. We can then test this
functionality by going back to our Pub/Sub topic and sending a message. Our function is looking for a JSON
body with an alert field. So the request will look like Figure 5-34.

171

CHAPTER 5 GOOGLE CLOUD

< C | & Secure htips je.cloud. le.com/cloudpubsubjtopics/AlertService/publishMess

age?prevstopic-details&projec

i Apps u Workday captech M Learning Locker & Developer - Interme.. A Cloud Guru [[) Linkedin i AWS Al Blog () GitHub ¢ Fii

= Google Cloud Platform e helio world - a

4 Pub/Sub & Publish message

=] Topics Topic

projecte/loysl-curve- 107623 N0pica/ Al rtService
&= Subscriptions

Mezsage

(alert”"please send towels’)

Attributes

+ Add item 7

Figure 5-34. Send a message to our topic to trigger our recently deployed function

You should be able to track the progress of the function by looking at the logs in the Firebase
environment. You can also track this in the Google Cloud functions environment. Our function was renamed
to subscribe and you can see its invocations under Function Details (Figure 5-35). Upon success, the alert
that we sent along the Pub/Sub will appear under alerts/ in our Realtime database.

€« © & Securw | bl | consoke fretase Googie com ¥ = 10782 1 tat aban et « 00 i

Fl hown 3y Workdey coptech [Loarming Locker & Drewioper - imterme_ A Civcd Gurs [0 Unkecin) A A1 Bog (Gt A7 Fighitasss Deveicp B Mlera iyl Cok-tine - Gmas (J Provousi Trsceer - [wwie 3017 - oms. (] Meariard IC31 - 5o oy apmasis & Biing JiDwive =

Realtime Database @

DATA

GO Wrigs Vioya-curve 1642 Irebaseso com o0 i

T Dot necusy rubes recuare uners 1o be sufamticated LEARN MORE DeSMcss

loyal-curve- 107823
= sherts
= HrSO-FCIREMLO0IECLY

sbort: “plaste zenc Towsly

Figure 5-35. Our message is now stored in our project’s Realtime database

172

CHAPTER 5 © GOOGLE CLOUD

We now have a function that is hosted in Google Cloud and also accessed by Firebase. You can view
logging and triggers in both environments and can easily update and deploy the function so it is accessible
by both consoles. The purpose of this exercise was to show this communication between functions and to
show how to access Cloud triggers and have them affect a Firebase database.

IMPROVING OUR SERVERLESS FUNCTION

Improve by integrating with our previous application

Add the Pub/Sub function to our original index. js file associated with Firebase.

1. Use the same logic we used for our storage trigger and add our Pub/Sub function to
the index. js in our HTTP function to be deployed together.

2. This will keep all of our functions together as one application.
Deploy the project as a Google Cloud project.

3. Host all of the projects under Google Cloud and import the entire project to Firebase
instead of having them stored separately.

Conclusion

In this chapter we explored several serverless applications with Google Cloud functions. We saw differences
between Google Cloud and AWS and Azure. We also learned the basics of Google Cloud including navigating
the console, configuring functions, establishing triggers such as HTTP and background triggers, as well as
some other popular integrated services like Firebase. At this point, you have experience building functions
with three different cloud providers. You should be able to differentiate between the providers and have a
better understanding of the pros and cons of each. We have also explored several ways to apply serverless
architecture. Some applications were more personal and others served actual business cases.

The code for this section can also be found on the GitHub site at:

https://github.com/mgstigler/Serverless/tree/master/GoogleCloud

In the next chapter, we will explore cloud-agnostic solutions to serverless applications. We will use
knowledge from the previous chapters to create this solution.

173

https://github.com/mgstigler/Serverless/tree/master/GoogleCloud

CHAPTER 6

An Agnostic Approach

At this point, we have explored serverless architectures using the three cloud providers: Amazon Web
Services, Microsoft Azure, and Google Cloud. We have created applications that use HTTP triggers and
storage triggers and respond to them by making changes in the provider-specific services. Through these
exercises, we have seen many use cases for these types of applications and provider-specific use cases.
In this chapter, we will take a step back and look at how to create solutions that aren’t dependent on

the specific provider. We will explore use cases and examples of application architectures that remove
the provider specific logic from the functions and leverage the universality of serverless code to provide
completely agnostic solutions.

Note You will need a basic understanding of how each of the provider’s services work in order to complete
the exercises in this chapter. If you have not gone through the examples for the three providers, please do so.

In this chapter, we will spend some time discussing the need for agnostic solutions, what that means
for future serverless applications, the approach that we will use to present a solution, the code we will use to
create the solution, and a serverless example using a database trigger.

Need for Agnostic Solutions

Before we begin developing an agnostic solution, I think it is important to identify why this is such an
important concept to tackle and why it is even worth approaching. I'm going to start by identifying a current
case study I have developed for my client, a global insurance company.

The Current State

My client is a world leader in the travel insurance and assistance industry. They help people anytime, anywhere
to find solutions to any travel-related problem. Their partners number in the thousands and include travel
agencies, airlines, resorts, websites, event ticket brokers, corporations, universities, and credit card companies.

This company is owned by the world’s largest diversified insurance company. Thanks, in large part,
to the scale of its parent company, it is able to provide innovative products with worldwide coverage at a
competitive rate.

Over 25 million travelers depend on this company every year to protect them while they’re away from
home. It provides a wide range of assistance and concierge services that can help its customers get the most
out of their trip. The company has been helping protect the fabric of America for more than 100 years. In
fact, this client insured the Wright Brothers' first flight, the construction of the Golden Gate Bridge, and
many Hollywood movies.

© Maddie Stigler 2018 175
M. Stigler, Beginning Serverless Computing, https://doi.org/10.1007/978-1-4842-3084-8_6

https://doi.org/10.1007/978-1-4842-3084-8_6

CHAPTER 6 © AN AGNOSTIC APPROACH

With this reputation and amount of services and clients involved, this client places a lot of importance
on its technical stack and architecture. With the current state, the company is currently involved with
one cloud provider but most of its infrastructure is in-house. Management wants to move the entire
infrastructure to the cloud, but with so many dependencies and a headquarters abroad, that is obviously
easier said than done.

The company’s first step toward the transition to the cloud has involved a starter application that
automates claim payments for trip delays and cancellations. The proposed architecture for this solution
involves several AWS Lambda functions and many services in AWS. There are four major parts to this
execution that are detailed in Figure 6-1.

CSV Load Flow

‘.
-
Step 4

w:::sm Record written to RDS '“";'s""
Function with “Sent” status.

Amazon Step 2
s3 $3 Triggers Parse CSV
Function. Parse C5V
function processes row
by row and triggers Write to
RDS Function.

Parse CSV
Function

Call Flight
Stats.
Function

Step 3

Record written to RDS with “New"” status.
Flight sent to Flight 5tats to begin monitoring.
Step 1

C5V file uploaded daily to AWS 53.
Fields:

* Airline

Departing Airport

Flight Number

Flight Date Flight
Delay Threshold Stats API
Contract ID

Country Code

Amazon 53

AWS Lambda

Amaron RDS

#0000 ®:3

AWS AP Gateway

IR

Figure 6-1. The CSV load flow demonstrates the transfer of data from on-premises to the AWS Lambda
functions

The current architecture with this cloud solution involves communicating between an on-premises
database and an AWS database. The on-premises site still stores all of the customer and flight data that is
needed to make this application work. On top of this, the changes required to make this transition are not
simple changes. They are company-wide changes that require a lot of time, resources, and process training.
Even providing a simple CSV file requires approval by headquarters, security, and the entire IT department.
This is very standard across industries.

Figure 6-2 shows the notification workflow, which takes an incoming flightstats request (such as a
delay or a cancellation).

176

CHAPTER 6 ~ AN AGNOSTIC APPROACH

Notify Workflow

Step 2

AP| Gateway triggers
Query RDS function to find
matched flights.

/f_

Query
Flights Amazon
i RDS
Amazon Function
AP Step 4
Gateway Write Call Write to RDS Function to
el Moe " update status of flight record.
Trigger Notify Event Functi
function to notify of unction
event. Without field Contract ID

Step ;
Flight Stats sends notification

Flight to APl Gateway. With field Contract ID

Stats API
Notify Call to Notify Event will contain the following fields:
Key: Event * Flight Number
W Amaons3 Function « Airline ABS
L Airport
I awsiambda B Flight Date
. Amazon RDS . Delay Threshold
. Event: Delay, Delay Threshold Met, Flight Cancelled
AWS AP Gaty
* S *Field names will be changed to meet global naming convention

Figure 6-2. The Notify workflow demonstrates the flow of data from the FlightStats API back to the Lambda
Jfunctions that handle the flight data

The Notify workflow, similar to the CSV flow, relies on communication with the on-premises database
to be successful. It also relies on a data transfer and update in Amazon RDS to send the appropriate data
back to the on-premises database.

Figure 6-3 demonstrates the SMS workflow, which takes a number and a text message from the
on-premises database and sends a text to the customer.

177

CHAPTER 6~ AN AGNOSTIC APPROACH

SMS Flow

Step 2 Step 3
AP| Gateway Triggers AWS Lambda calls SNS via
Lambda Function SDK.
Amaran API AWS Lambda Amazon SNS \
Gateway
Step 4
AWS SNS Sends message
via SMS
Step 1
Request sent to Amazon APl Gateway. Key:
Fields Included:
Al 53
Peoplesoft * Phone Number O A
+ Text Message B awsombda
. Amazon RDS
£ awsarGateway

Figure 6-3. The SMS flow demonstrates the ability of the application to notify customers when a flight has
been delayed or cancelled to the extent that a claim can be filed automatically

Once again the flow depends on internal data flowing in and out to be able to text the customer with
their flight delay and cancellation information. The next flow updates the table information in the on-
premises database to be cleared every two weeks. This is triggered by a cloud watch timer that executes a
Lambda function that reaches out to the on-premises system to clear out the old and outdated flight data.
Figure 6-4 demonstrates this process.

178

CHAPTER 6 ~ AN AGNOSTIC APPROACH

Update Tables Flow

Step 3
FS returns airlines and

Flight airports to the lambda
Step 1 Step 2 Stats API

Cloudwatch triggers the The Update Lambda sends a

lambda function every 2 GET request to FS Step 4

weeks The Update Lambda sends
this data to PS

"

AWS Cloudwatch AWS Lambda

Peoplesoft

Key:
1 Aws Coudwateh

I awstambda

Figure 6-4. The Update Tables flow demonstrates the Lambda function flow that updates the cloud database
as well as the on-premises database

The bottom line with all of these flows and processes within the new architecture is that they depend
on both the on-premises infrastructure and the AWS infrastructure. While it is a very well designed
system and a great idea from a customer standpoint, there are many concerns from a business and overall
architecture standpoint.

Business Problems

Given the provided architecture and flow diagrams, there are several business problems that have been
raised. One of the major problems is the dependence on AWS Lambda functions. One of the proposed
solutions is to host the application on EC2 instances, where the environment could be controlled and
dockerized. However, this solution also involves writing all of the SNS components independently of the
services because we would want to be completely removed from the AWS environments.

The client is currently dependent on one cloud provider for part of its services but does not want to be
entirely dependent on this provider, nor does it want to be partially dependent on many cloud providers.
A fear with going with AWS is the dependence on this provider overall. And while the client is planning on
shifting its entire infrastructure to AWS, management still holds the very rational fear of being locked into
AWS as a vendor.

179

CHAPTER 6 © AN AGNOSTIC APPROACH

In my opinion there are several reasons behind this fear of vendor lock-in. One is the need to avoid
along re-engineering effort if the client ever decides to change providers. This makes sense because it is
something companies are dealing with on a daily basis. And if we take it back a level, companies switching
from on-premises services to cloud services are already making a huge move that requires a lot of effort
and a lot of process engineering. On top of that, they face the fear of switching providers, which requires the
same amount of effort all over again.

Another reason for this fear rests in the idea that a single cloud computing vendor will overtake the
market and make it less of a choice. In this case, the only solution would be to redeploy and architect for
a different vendor. This fear is very valid and a common one among large and small companies. The fear
of losing all of your employee data and core application functionality is very real and a good concern for
companies to have.

While my client was sold on AWS as a vendor, management knew this was a potential end-game for
the cloud solution and presented their concerns to us in a very reasonable manner. One option was to have
a cross-provider solution. While this would allow the company to use services and products in a cross-
provider environment, it is still locked into whatever vendor it chooses for whatever service it is providing.

From a business perspective, the vendor lock-in concern is a serious one. In addition, the
transformation of large historical data to the cloud also weighs heavy on businesses. The cost may be better
in the long run but looking at it in the short and quick deployment phase, it tends to seem costly and risky.

The company wants to be able to use the scalable and flexible resources of cloud providers, but
struggles with making changes that could impact the future of the company’s infrastructure as well as the
responsiveness toward its clientele.

Recommended Solution

To be able to address all of the concerns of the client while still providing the best solution and most cost-
effective solution, the best solution would be to develop an application that is provider-independent. In this
situation, the company still gets all of the rewards of relying on a cloud provider without wreaking any of the
potential downfalls of falling into vendor lock-in.

The tricky part of this is implementing the solution correctly. We have already seen scenarios in
which we remove cloud logic from the functionality. This would build from that idea and remove the cloud
provider logic entirely and provide it in many forms.

For instance, we would have one solution that could switch between AWS, Azure, and Google Cloud
simultaneously. Figure 6-5 shows a rough execution of this solution with the first step in the updated overall
CSV load flow.

180

CHAPTER 6 ~ AN AGNOSTIC APPROACH

) .
Step 2 Step 4

Parse CSV
A Upload to Blob Storage Function Write data to database

Call Elight

Stats
Funct Step 3 . _
Record written to RDS with “New" status,

Flight sent to Flight Stats to begin monitoring.
Step 1
CsV file uploaded daily
Fields:
* Airline
* Departing Airport
* Flight Number

* Flight Date Flight
= Delay Threshold Stats AP
* Contract ID

* Country Code

Figure 6-5. The solution is implemented without any knowledge of who the provider is

In this flow, we create the same interaction that would happen during the CSV flow, except that the
provider is not a part of it. This would be appealing to many businesses because they would be able to
implement cloud solutions without fear of vendor lock-in, and yet also with fear of vendor lock-in.

The way this solution works, you would be able to exist as a company with vendor lock-in and then
switch vendors as necessary. For our recommended solution, we will look into a solution that relies on this
vendor lock-in yet knows it’s a weakness enough to code directly for this weakness.

Define the Approach

While we can identify the obvious business need for an agnostic approach, it is also appropriate to assess
this situation on an application-by-application approach. For instance, I might be developing an Alexa

Skills application that I want to be accessible by only Amazon Lambda functions. In other occurrences,

for instance with the client situation, I would want it to be accessible by all client functions. Or, suppose I
wanted my code for my Alexa Skill to translate to Google Home, Apple’s Siri, or Microsoft’s Cortana. These
are very reasonable needs. Companies want their products to be accessible across platforms and products to
reach a wider audience.

The serverless architecture makes this jump more feasible than you would think. If we were to try to
apply this logic within virtual machines or applications with infrastructure, we would have a harder time. We
would be required to set up entirely different services within these environments and make them publicly
accessible.

When you think about the different use cases for the agnostic approach, you can see how the code
itself with its underlying logic shouldn’t have to change. The only thing that separates these application
environments is the environments themselves.

181

CHAPTER 6 * AN AGNOSTIC APPROACH

We are going to explore how an agnostic approach might work. In order to do this, I want to start small
and then grow as we develop larger applications. To accomplish a scalable and accessible approach to this
problem, I think the best way to address this is through small steps.

Serverless Framework provides us with a couple of examples of how to create serverless functions
correctly and agnostically. The following snippet demonstrates a poor example of agnostic code.

const db = require('db"').connect();
const mailer = require('mailer');

module.exports.saveUser = (event, context, callback) => {
const user = {
email: event.email,
created at: Date.now()

}

db.saveUser(user, function (err) {

if (err) {
callback(err);

} else {
mailer.sendWelcomeEmail (event.email);
callback();

}

b;

b

This code is a poor example for a couple of reasons:

e The business logic is not separate from the Faa$ provider. It's bounded to the way
AWS Lambda passes incoming data (Lambda's event object).

e Testing this function will rely on separate services. Specifically, running a database
instance and a mail server.

How can we refactor this and make it executable yet not dependent on functions specific to AWS? The
following code demonstrates how we can separate the logic from the execution.

class Users {
constructor(db, mailer) {
this.db = db;
this.mailer = mailer;

}

save(email, callback) {
const user = {

email: email,

created at: Date.now()

}

182

CHAPTER 6 ~ AN AGNOSTIC APPROACH

this.db.saveUser(user, function (err) {

if (err) {
callback(err);
} else {
this.mailer.sendWelcomeEmail(email);
callback();
}

};

}

}

module.exports = Users;

This users class handles the incoming requests rather agnostically. The database and mailer are both
provided externally. In this case, we could provide the class with an Azure db and mailer instance, a Google
db and mailer instance, or an AWS db and mailer instance.

The following code demonstrates the index module that calls the Users class.

const db = require('db"').connect();
const mailer = require('mailer');
const Users = require('users');

let users = new Users(db, mailer);

module.exports.saveUser = (event, context, callback) => {
users.save(event.email, callback);

};

Now, the class we've defined here keeps business logic separate. Further, the code responsible for
setting up dependencies, injecting them, calling business logic functions, and interacting with AWS Lambda
is in its own file, which will be changed less often. This way, the business logic is not provider-dependent,
and it’s easier to re-use and to test.

Further, this code doesn't require running any external services. Instead of a real db and mailer
services, we can pass mocks and assert if saveUser and sendWelcomeEmail have been called with proper
arguments.

Unit tests can easily be written to cover this class. An integration test can be added by invoking the
function (serverless invoke) with fixture email address It would then check whether the user is actually
saved to DB and whether email was received to see if everything is working together.

Our approach to solving the agnostic scenario will follow a similar path. The index file or the main file
executing the code will be blind to the provider and the logic and services associated with that provider.
Figure 6-6 illustrates the feasibility of this approach.

183

CHAPTER 6 * AN AGNOSTIC APPROACH

Triggering Event
Invokes Serverless

Function

Function executes
based on provided
services

Function is
executed using
provider specific
services

Figure 6-6. The proposed solution keeps provider logic separate from the normal operation of the application.
When the function is deployed, we select the provider we want to deploy with and use only its logic and
services.

184

CHAPTER 6 ~ AN AGNOSTIC APPROACH

With this proposed solution, the provider-specific code is kept separate from the index file. When
it is time to deploy, you can select the appropriate provider logic code and deploy to that provider’s
environment. To make this even simpler, we will utilize the Serverless Framework to deploy the code.

The serverless.yml file includes a provider input field. We would need to change that depending on
the provider and deploy making sure the triggers and services are all stated correctly per provider inside
of this file. We could even have a serverless file for each provider and then chose which to deploy when we
settle on a provider. The following code shows us where we can change the deployment provider when we
need to:

serverless.yml

service: azfx-node-http

provider:
name: azure

location: West US

plugins:

- serverless-azure-functions

functions:
hello:
handler: handler.hello
events:
- http: true
x-azure-settings:

authLevel : anonymous

Now that we have a better understanding of our design approach, we can explore the Hello World code
we will use to test the proof of concept at scale. We will stick with the three providers we have been using
(Amazon, Azure, and Google) and will deploy with each provider and ensure that the function works the
same.

185

CHAPTER 6~ AN AGNOSTIC APPROACH

Explore the Code

We will create a general project structure for our agnostic solution based on the proof-of-concept approach
detailed previously. The first thing we will do is create a project structure in which the index file is at the root
of the folder and there is a storage folder that contains separate AWS, Google, and Azure folders (Figure 6-7).

4 SERVERLESS
4 Agnostic
> AWS
» Azure
4 CloudAgnostic
4 CloudAgnostic
b .serverless
» node_modules
> obj
b aws
P azure
» google
b typings
.gitignore
CloudAgnostic.njsproj
index.js
package.json
README.md
.gitattributes
.gitignore
CloudAgnostic.sin
» GoogleCloud
README.md

er O @Q0A0

Figure 6-7. The project structure stores cloud-provider-specific knowledge in different folders. This keeps it
separate from the index file as well as from being confused with other provider logic.

186

CHAPTER 6 ~ AN AGNOSTIC APPROACH

For our first demonstration of our proof of concept, we are simply going to make our index file log
the provider environment it is in. We are also going to use Serverless Framework to deploy to different
environments. We will begin by looking at our index file.

// dependencies
var provider = ‘aws';
var Provider = require('./storage/' + provider + '/provider')

exports.handler = function (event, context, callback) {
Provider.printProvider("Hello World");

}

The index file will have one value that you will have to update between deployments, and that is the
provider variable. We will test the ability to easily switch between providers and pass index variables into
different environments. Within each provider folder, we will add a provider JavaScript file.

The following code demonstrates what I have in my provider file. You will need to change the response
per provider file.

// dependencies

module.exports = {
printProvider: function(message) {
console.log('Message: ' + message + ' from AWS!');
}
}

The provider.printProvider function simply logs the message being passed from the index file with
the provider’s environment. We will also want to initialize a serverless.yml file within each provider’s
folder. Each serverless file will be specific to the provider.

The following code demonstrates an AWS serverless.yml file.

service: aws-nodejs

package:
individually: true

exclude:
- /**

provider:
name: aws

functions:
helloworld:
handler: index.handler
package:
include:
- ../../index.js
- ../../storage/aws/**
- node_modules/**

187

CHAPTER 6 © AN AGNOSTIC APPROACH

To switch the provider, simply change aws to azure or google. You will also need to update the package
paths to reflect the correct path for the provider’s logic. In this case, we would just be changing the folder
path after ../../storage/.

Finally, we are ready to deploy our functions in their respective environments. To do this, simply
navigate to the provider directory you want to deploy from and enter the following command into your
terminal:

serverless deploy
This will deploy the suggested function into the correct provider environment. Do this with all three

providers. Once they have all been deployed, we can log in to the individual consoles and see the effect of
our changes.

Note | realize this feels like a very repetitive task with a lot of overhead, but keep in mind that in the real
world, you would probably not be consistently deploying your applications in different environments. Instead you
would be deploying them when you need them and when you are ready to switch providers.

We didn’t establish a trigger for our serverless function, because we really just wanted to test the project
structure as it is, as a proof of concept. So in order to test our function, in each environment you can trigger
it with any request. If our implementation of our concept was successful, you will see the correct response
message with the correct provider in the logs (Figure 6-8).

ao

€ O S b cemsavamaroncem

T Asow y Werkday captech B Lowong Locher & Deweloge - interre. Aot G [Unanin 0 A8 A1 Doy () OBAE A Fighedints Drowkin. B Mwes) Coba-foro - Siked [Pvowoss Trocker - BT Dwvere 2017 - viome] Hewriend £531 - Su dy Puvmests 8 Big Jl0eie =

AWS Lambda
aws-nodejs-dev-helloworld e

@ gxecution result: suceeeded (1oge)

Figure 6-8. Our proof of concept was successful. We can see the message from AWS clearly in the logs.

188

CHAPTER 6 ~ AN AGNOSTIC APPROACH

We should be able to see this message change dynamically depending on the environment we deploy it
to. One potential future development to keep in mind for this proof of concept is determining how to detect
our environment and pull from the correct project folder once we realize what provider we are using.

That capability would be helpful for a couple of reasons. The first is that we would eliminate the manual
process involved in switching the provider in the code. Some innovative groups have already started making
moves in this direction. You can see this with Serverless Framework, which tries to make it as painless as
possible to get your code deployed to whatever cloud provider you want.

However, even Serverless Framework requires you do setup to preface the deployment. This setup
usually consists of specifying the cloud provider and initializing your CLI environment with this provider.
That’s not much compared to the manual process of deploying a project to functions, but I do think it is
something that will be made even more seamless in the future. Cloud providers might even start making
themselves more accessible and integral between different environments.

Just to confirm that this solution did work across multiple environments, I also tested the function in
the Google and Azure platforms. As shown in Figure 6-9, both were successful and displayed the expected
log statement.

C | @ Secure hitps://console.cloud.google.com/logs/view u tion%2Fiu ¢ 2Fagnostick2Fregion%2Fus-c B Log
I Apps oy Workday captech [Learning Locker & Developer - Interme— ACloud Guru) Linkedin @ AWS Al Blog) Github Y FlightStats Develop.. 8 Alexa Iyl Coke-Echo - GitLab [Propos

= Google Cloud Platform $» helloworld - qQ

w— Stackdriver

tly CREATE METRIC & CREATE EXPORT c >
Logging
W Lops
i Lops-based Metrics
Cloud Function, sgnostic, us-centrall - Aflogs = Amyloglevel = Jumptodste =
& Exports
20170814 EDT

B Resource Usage = [:23:07:07.107 Cloud rusctioss Upditerusction us-centralliagnostic ("#type’:”type.googleapis.com/google.clocd.audit.Aeditlog”, st

s/loysl-curve-107621/1logs /eloudsudit. googleapls .comiIractivity

+ B : 40.290 agnostic KvolcOyOlrsw runctlon execution started

= [23:07:40.629 agnostic KvolcOylrsw Message: Hello world from Cooglet

4 aguostic kvolcOyblrsw runction execution took 0004 ms, finished with status: 'timecut
4.627 agnostic fuplexfwiy$s Function execution started
3112:04.700 sgnostic fuplextwlySs Message: Mello World froa Cooglel
!0 sgeostic feplexfwiyss Functios execution took $0002 ms, fimished with status: 'cimeout

agnoatic 1lmSoavkkIyh Function executlon started

! asgnostic ilsScavkklyh Message: Mello World from Google!

-N-0-N-R-N -0

* sgnostic LlmSosvkkiyh runction execution took §9002 ms, finished with states: 'timeout

Figure 6-9. The correct response message from Google Cloud Functions proves that not only does the Hello
World function make successful requests, it is flexible and scalable across platforms

Now that we have shown our proof of concept is functional across providers, we need to add actual
cloud provider logic to it to prove that our concept is scalable. In the next section we will build upon this to
add a storage component.

189

CHAPTER 6 * AN AGNOSTIC APPROACH

Code and Example Using the Database

To prove that our concept scales appropriately with different cloud logic, we are going to create an application
that is triggered by an HTTP event and stores the event information of that trigger in Blob storage. We will
continue using our Google Cloud scenario of a hotel room with a guest for our incoming data.

The first thing we want to do is add a storage JavaScript file in each of our provider’s storage folders. This
file is going to contain a function that takes in two parameters, a message and a message ID, and will store
the message in the provider’s Blob storage under the message ID value.

We can now write the code specific to the cloud provider for this logic.

// dependencies

var AWS = require('aws-sdk');

var S3 = new AWS.S3();

var BucketName = 'poc-cloudagnostic-maddie’;

module.exports = {
saveObject: function(message, messageId) {
console.log('Message: ' + JSON.stringify(message));

// upload the message to S3
S3.putObject({
Bucket: BucketName,
Key: messageld,
Body: JSON.stringify(message)
}, function (err) {
if (err) {
console.error('Error: ' + err);
} else {
console.log('Success");
}
D;
}
}

We will return the result to S3 Blob storage in AWS. To create and upload a string, we just need to specify
the bucket name, key, and body that we are saving to. I created my bucket within the console and made it
open and available to incoming requests. You will also need to make sure your Lambda function role has
access to update S3 buckets.

The resulting policy looks like this:

{
"Version": "2012-10-17",
"Statement": [
"Effect": "Allow",
"Action": "s3:*",
"Resource": "*"
}
]
}

190

CHAPTER 6 ~ AN AGNOSTIC APPROACH

We also want to create our storage service for Azure. Like AWS, Azure also requires a Blob storage name
for the bucket, the message you want stored, and the message ID you want your message stored under.
Asyou can see, the code is very similar between these two providers. We could probably extract even more of
it and make it even dumber.

// dependencies

var azure = require('azure-storage');

var blobClient = azure.createBlobService();
var containerName = 'poc-cloudagnostic';

module.exports = {
saveObject: function(message, messageld) {
console.log('Message: ' + message);
message = JSON.stringify(message);
blobClient.createBlockBlobFromText(containerName, messageId, message, function(error,
result, response) {
if(error) {
console.log("Couldn't upload");
console.error(error);
} else {
console.log("Upload successfull™);
}
H
}
}

For Google Cloud storage, we once again have a code structure very similar to the previous cloud
providers. The main difference here is that we need to specify the projectId and the keyFilename that the
function is under. The project ID is the unique ID that Google assigns your project at setup. You can grab it
from your dashboard.

The keyFilename is simply looking for the path to your keyfile.json document. To locate this, pull up
your Cloud Shell through your console and enter this command:

pwd keyfile.json

It should be stored somewhere in the home/user/ directory. After that connection is established, we just
need to create a bucket and upload our event to the bucket.

// dependencies
var storage = require('@google-cloud/storage');
var gcs = storage({

projectId: 'loyal-curve-107623",

keyFilename: '/home/maddie stigler'

};

var containerName = 'poc-cloudagnostic';

module.exports = {
saveObject: function(message, messageId) {
console.log('Message: ' + message);
gcs.createBucket(containerName, function(err, bucket) {
//bucket created

191

CHAPTER 6 © AN AGNOSTIC APPROACH

if(lerr) {
var bucket = gcs.bucket(containerName);
bucket.upload(JSON.stringify(message), function(err, file) {
if(lerr) {
console.log("success");
}
H
}
D;

Asyou can seeg, a lot of the storage execution in our cloud provider functions is very similar. We could
probably convert a lot of this code to use environment variables so that we don’t replicate it across projects.
For now, we will leave it as is to test and make sure everything is still functioning properly.

The next piece of code we need to update is the index.handler module. As in the Provider module, we
will require the Storage module and call it in the body by sending it the incoming event and a string for the
keyfilename. I am just going to use 1 for now.

// dependencies

var provider = 'aws';

var Provider = require('./storage/' + provider + '/provider');
var Storage = require('./storage/' + provider + '/storage');

exports.handler = function (event, context, callback) {
console.info(event);
Provider.printProvider("Hello World");
Storage.saveObject(event, '1');

}

The last thing we need to do before moving on and testing our code is to update our serverless.
yml file. We need to be sure that our storage. json file is being included in the project zip. We also need to
configure the HTTP trigger.

helloWorld:
handler: index.handler
events:
- http:
method: post
package:
include:
- ../../index.js
- ../../storage/aws/**
- node_modules/**

If you wanted to include a path for your HTTP event as we did in some previous examples, you could

also configure that in the serverless file. I recommend going to https://serverless.com/framework/
docs/ and reading the documentation for the particular cloud provider you are looking at.

192

https://serverless.com/framework/docs/
https://serverless.com/framework/docs/

CHAPTER 6 ~ AN AGNOSTIC APPROACH

Now we are ready to deploy. We can follow the same procedure that we followed earlier by using
serverless deployment in each project folder. Once they are all deployed, we can go into the console and set
up a test event to try and trigger our function.

I am going to show examples from just AWS, but these functions should be working for all cloud
provider environments.

The POST request I'm going to send in is this:

"name": "Maddie",
"roomnumber": "117"

When we test in the AWS portal, we get a success message with the logging statements we included
(Figure 6-10).

& O @ Gecu | hips consoleaws.amazon.com

Fl Apen 3 Workdey captech B Luarming Locher & Grovioper - lniarma_ A Civwd Gorw [Unkedn i AN A1 Bog () Gich A7 Fighttiots Dwvwics B Aines g Coba-fche - Gitan [Prosonsd Tracksr - B Eiwrie 3017 - Home (] Heartiord £C51 - So oy Pwpmen

AWSLambla X L

Frrpe—

Deitlesirt aws-nodejs-dev-helloworld

P

2 Emeeution result: sutceeded fiogs)
* eis

Log output
Tha e ko thos
ot 9 g casesponcing
ot

Figure 6-10. The AWS function returns a successful response in the console test event

We now need to make sure our event made it to S3. Navigate to the bucket you created. You should see a
new 1 object stored in it (Figure 6-11). If you did, congrats! If not, go back and check on your code and make
sure everything is defined correctly.

193

CHAPTER 6 * AN AGNOSTIC APPROACH

‘00 ® 1~

{"name": "maddie", " roomnumber":"117"}

Figure 6-11. The AWS function logged our incoming event to our specified S3 bucket

Before we label this a success on the expansion of our proof of concept, we need to check that the two
other storage events occurred. In Azure, your event data will be stored in Blob storage. You should see your
Blob in the container you created. In Google, your event data will be stored in Google Storage. You should
see the bucket you created with your event data stored in it.

If you see all of this, congrats! We have officially created an agnostic solution. Granted, this is a very
simple application, but the ideas are scalable across services.

IMPROVING OUR SERVERLESS FUNCTION

Improve by using environment variables and enforcing models

Use environment variables to store the variables we are repeating in our provider logic:

e Use Environment variables either in Serverless Framework or stored directly in the
provider’s environment:

Define function environment variables here
environment:
variable2: value2

Environment variables will keep our buckets and paths consistent across providers. They will also
ensure that we don’t repeat code too often across provider logic.

194

CHAPTER 6 ~ AN AGNOSTIC APPROACH

Use models to enforce incoming requests:

1. Set up authorization on our endpoint and make sure these authorization keys are
stored properly either as environment variables or in the provider console.

2. Use JavaScript models to structure the incoming data:

export interface requestModel {
name: string,
roomnumber: string

}

3. We can also implement request method checks as we did in the Google Cloud
example.

The code for both of these improvements on the project can be found here: https://github.com/
mgstigler/Serverless/tree/master/CloudAgnostic/

Conclusion

In this final chapter, we explore ways to make our code cloud-agnostic. In this sense, we were able to access
AWS, Azure, and Google Cloud services within one function. If the business owner ever decided to settle on
one cloud provider over another, that would be covered under this solution. You learned how to integrate
different cloud services into different cloud functions and have them easily accessible within their own
environments. At this point, you should be able to distinguish between which provider’s functions are being
triggered and how are they are handling them in this state. This chapter is important because it addresses
concerns of real clients and proposes a solution to the issue.

The code for this chapter can also be found on the GitHub site at:

https://github.com/mgstigler/Serverless/tree/master

This might be the end of the novel, but I will continue adding to each chapter as the knowledge for each
one expands beyond what I originally thought.

195

https://github.com/mgstigler/Serverless/tree/master/CloudAgnostic/
https://github.com/mgstigler/Serverless/tree/master/CloudAgnostic/
https://github.com/mgstigler/Serverless/tree/master

Index

A IAM
console, 48
Agnostic approach Lambda functions, 49
AWS Lambda functions, 176 Policies, 48
business problems, 179-180 Roles tab, 48
cloud provider, 186, 190 Users, 48-49
coding, 182 lambda, 17
definition, 181 storage event
enforcing models, 195 Amazon S3, 77
environment variables, 194 DynamoDB table, 78
execution, 182-183 ImageUrtl attribute, 80-81
feasibility, 183-184 log results, 79
Google Cloud storage, 191 API Gateway, 2
index file, 187 Audit logging, 142
keyFilename, 191-192 AWS lambda, 2
logs, 188 AWS-lambda-local, 13
notification workflow, 176-177 Azure
policy, 190 Application Insights
POST request, 193 configuration, 103-104
recommendation, 180-181 features, 106
S3 bucket, 194 NET, Node.js, and J2EE. Azure, 105
serverless.yml file, 185, 187 tools, 105
SMS workflow, 177-178 blob storage, 127
storage.json file, 192 functions, 18
test event, 193 Functions blade, 89-91
Update Tables flow, 178-179 Hello World function
Users class, 183 App Name, 96
Amazon Web Services (AWS) creation, 96-98
Amazon S3, 74 hosting plan, 96
AWS UI HTTP Trigger, 100
Lambda console, 47 location, 96
navigation, 44 manage blade, 100-101
pricing, 45 resource group, 96
services, 41-42 runtime options, 98
CloudWatch, 55 settings, 96-97
Configure Test Event, 52-53 storage account, 96
environment variables testing, 101-103
Hello World, 59 WebHooks and API, 98-99
key and value, 57 HTTP events. See HTTP events
Execution result, 53-54 navigation
Hello World, 52 Cloud Shell, 84-85
HTTP resources. See HTTP resources PowerShell option, 85
© Maddie Stigler 2018 197

M. Stigler, Beginning Serverless Computing, https://doi.org/10.1007/978-1-4842-3084-8

https://doi.org/10.1007/978-1-4842-3084-8

INDEX

Azure (cont.)
Resource Group blade, 86
service accounts, 87
Storage Account resource, 86-88
pricing and billing, 88-89
resources and running services, 84
security
advanced cloud defense, 92
Microsoft, 92
policy, 94
recommendations, 93-94
Azure Queue storage, 117-118

Billing blade, 88-89
Blob storage, 127

C,D

Cloud providers
cloud console, 30
functions and resources development, 29
local development, 28

Command-line interface (CLI), 5

E

Elastic Compute Cloud (EC2), 3

F

Firebase, 19
Firebase Realtime Database
authorization piece, 159
Firebase CLI, 151
firebase deploy command, 155
firebase.json file, 154
flatten data structures, 159
formatting and displaying, 155-156
functions directory, 153
Hosting, 152-153
index.js file, 154
installation, 151-152
JSON body format, 158
Lightweight Web App, 151
nesting data, 158
NoSQL database, 157
POST request, 156-157
pre-rendering, 151
serving dynamic content, 151
staging, 153
strongly typed variables, 159
flightstats request, 176
Function as a service (FaaS). See Serverless
computing

198

G

GetRecipes, 72
Google Cloud, 20
concepts, 130
Hello World project
creation, 138
HTTP trigger, 140
Postman POST request, 141
properties, 139
test method, 140
HTTP event
configuration, 150
POST request, 150
navigation, 131-132
networking services, 130
pricing and billing, 132-134
Pub/Sub event
creation, 170-171, 173
definition, 168-169
Security IAM
customized roles, 137
Dashboard blade, 135-136
policy, 137-138
predefined roles, 136
primitive roles, 136
project level, 135
Stackdriver logging
CloudWatch, 142
debugging mode, 143-145
features, 141
stage bucket
bucketAccessControls, 145
PUT request, 149
request.method property, 146-147
switch statements, 148, 149
storage event
alertSent field, 165-166
creation, 160, 162
Firebase command, 163
functionality, 163
JSON body format, 164-165
logging, 166-167
logic and utilizing serverless
framework, 168
Realtime database, 165
Twilio data, 163
variables, 163

H

HTTP resources
API Gateway
example of, 60
GET method, 61
Lambda function, 62

new child resource, 60-61
Stages tab, 63-64
triggers, 68
users and services, 62-63
DynamoDB Table, 71
GitHub WebHook
callbacks, 107
creation, 107-110
handler.js function, 72
Hello World API trigger
Debug console, 114-115
function.json file, 112-113
index.js file, 113-114
notification application, 116
outputs, 111
package.json files, 114
Twilio account, 111-112
TwilioAccountSid, 112
URL function, 115-116
Lambda function, 73
package.json file, 69
Postman request, 72-73
proposed project structure, 68-69
recipeModel.ts file, 70
storage event
Azure Queue storage, 117-118
Blob storage, 127
creation, 118, 120
initial message, 125-126
Microsoft Azure Storage Explorer, 120
myQueueltem, 124
package.json file, 123
Request node module, 124
structure, 125
tsconfig.json, 70

LJ, K L

Identity and access management (IAM), 15
customized roles, 137
Dashboard blade, 135-136
policy, 137-138
predefined roles, 136
primitive roles, 136
project level, 135
Infrastructure as a service (IaaS), 3

Microsoft Azure Storage Explorer, 120

N, O

Node.JS, 22-23
Node-lambda tools, 13
Node Package Manager (NPM), 37

INDEX

PQR

Platform as a service (PaaS), 3

S

Security policy, 94
Serverless computing
architectural trends, 3
cold start, 12
configuration of, 4
custom event-driven code, 2
development and deployment, 5-7
event-driven computation, 1
ITaaS, 3
independent processes, 6
infrastructure control, 9
long-running batch operations, 10
lower cost, 7
Netflix, 8
online textbook store, 4
scalability, 7-8
shared infrastructure, 13
testing and deployment tools, 14
vendor lock-in, 12
Software as a service (SaaS), 3
Software development kits (SDKSs)
AWS, 24
Azure, 26
Google Cloud, 27
TypeScript, 22-23

T

Triggers
cloud providers, 22
events, 8
HTTP request, 20
input and output bindings, 20-21
name property, 21
POST request, 21
Twilio function, 112, 114

U

UpdateRecipe, 75-76

VW, X, Y, Z
Visual Studio Code
development environment, 38-40
installation, 30
navigation, 37
Node.js, 32
NPM, 37
Postman, 33
Serverless Framework, 38

199

	Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Understanding Serverless Computing
	What Is Serverless Computing?
	Serverless As an Event-Driven Computation
	Functions as a Service (FaaS)
	How Does Serverless Computing Work?

	How Is It Different?
	Development
	Independent Processes

	Benefits and Use Cases
	Rapid Development and Deployment
	Ease of Use
	Lower Cost
	Enhanced Scalability
	Netflix Case Study with AWS

	Limits to Serverless Computing
	Control of Infrastructure
	Long-Running Server Application
	Vendor Lock-In
	“Cold Start”
	Shared Infrastructure
	Limited Number of Testing Tools

	Conclusion

	Chapter 2: Getting Started
	What Each Provider Offers
	AWS Lambda
	Azure Functions
	Google Cloud Functions

	Explore Triggers and Events
	What Are Triggers?
	Triggers within Cloud Providers

	Development Options, Toolkits, SDKs
	TypeScript with Node.JS
	AWS SDK
	Azure SDK
	Google Cloud SDK

	Developing Locally vs. Using the Console
	Local Development
	Deployment of Functions and Resources
	Developing and Testing in the Cloud Console

	The Tools
	Installing VS Code or Choosing Your IDE
	Node.js
	Postman

	Environment Setup
	Navigating VS Code
	Node Package Manager: What It Does and How to Use It
	Serverless Framework
	Organizing your Development Environment

	Conclusion

	Chapter 3: Amazon Web Services
	Explore the UI
	Navigation
	Pricing
	Lambda

	Security IAM
	IAM Console
	Roles, Policies, and Users
	Roles for Lambda

	Your First Code
	Hello World
	Testing
	CloudWatch

	Environment Variables
	What Are Environment Variables
	Using Environment Variables in Hello World

	HTTP Event
	Exploring API Gateway
	Using API Gateway as a Trigger
	Response to Trigger

	Storage Event
	Amazon S3
	Using S3 as a Trigger
	Response to Trigger

	Conclusion

	Chapter 4: Azure
	Explore the UI
	Navigation
	Pricing
	Azure Functions

	Azure Security
	Implement Recommendations
	Set Security Policies

	Your First Code
	Hello World
	Testing
	Application Insights

	HTTP Events
	Create a GitHub WebHook Trigger
	Build Upon Our Hello World API Trigger

	The Storage Event
	Azure Queue Storage
	Create the Function
	Microsoft Azure Storage Explorer
	Finish Our Function

	Conclusion

	Chapter 5: Google Cloud
	Explore the UI
	Navigation
	Pricing
	Cloud Functions

	Security IAM
	IAM Console
	Roles
	Policies

	Your First Code
	Hello World
	Stackdriver Logging
	Stage Bucket

	HTTP Event
	Firebase Realtime Database
	Avoid Nesting Data
	Flatten Data Structures
	Create Data That Scales

	Storage Event
	Create our Storage Triggered Function
	Reacting to the Triggered Event

	Pub/Sub Event
	What Is Google Cloud Pub/Sub?
	Creating Our Pub/Sub Function

	Conclusion

	Chapter 6: An Agnostic Approach
	Need for Agnostic Solutions
	The Current State
	Business Problems
	Recommended Solution

	Define the Approach
	Explore the Code
	Code and Example Using the Database
	Conclusion

	Index

